Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Bioconjug Chem ; 33(1): 4-23, 2022 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-34894666

RESUMO

For the past two decades, atomic gold nanoclusters (AuNCs, ultrasmall clusters of several to 100 gold atoms, having a total diameter of <2 nm) have emerged as promising agents in the diagnosis and treatment of cancer. Owing to their small size, significant quantization occurs to their conduction band, which leads to emergent photonic properties and the disappearance of the plasmonic responses observed in larger gold nanoparticles. For example, AuNCs exhibit native luminescent properties, which have been well-explored in the literature. Using proteins, peptides, or other biomolecules as structural scaffolds or capping ligands, required for the stabilization of AuNCs, improves their biocompatibility, while retaining their distinct optical properties. This paved the way for the use of AuNCs in fluorescent bioimaging, which later developed into multimodal imaging combined with computer tomography and magnetic resonance imaging as examples. The development of AuNC-based systems for diagnostic applications in cancer treatment was then made possible by employing active or passive tumor targeting strategies. Finally, the potential therapeutic applications of AuNCs are extensive, having been used as light-activated and radiotherapy agents, as well as nanocarriers for chemotherapeutic drugs, which can be bound to the capping ligand or directly to the AuNCs via different mechanisms. In this review, we present an overview of the diverse biomedical applications of AuNCs in terms of cancer imaging, therapy, and combinations thereof, as well as highlighting some additional applications relevant to biomedical research.


Assuntos
Ouro
2.
Biomacromolecules ; 19(7): 2841-2848, 2018 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-29750866

RESUMO

Ultrasmall gold atom clusters (<2 nm in diameter) or gold nanoclusters exhibit emergent photonic properties (near-infrared absorption and emission) compared to larger plasmonic gold particles because of the significant quantization of their conduction band. Although single gold nanocluster properties and applications are being increasingly investigated, little is still known about their behavior and properties when assembled into suprastructures, and even fewer studies are investigating their use for biomedical applications. Here, a simple synthetic pathway combines gold nanoclusters with thermosensitive diblock copolymers of poly(ethylene glycol) (PEG) and poly( N-isopropylacrylamide) (PNIPAm) to form a new class of gold-polymer, micelle-forming, hybrid nanoparticle. The nanohybrids' design is uniquely centered on enabling the temperature-dependent self-assembly of gold nanoclusters into the hydrophobic cores of micelles. This nonbulk assembly not only preserves but also enhances the attractive near-infrared photonics of the gold nanoclusters by significantly increasing their native fluorescent signal. In parallel to the fundamental insights into gold nanocluster ordering and assembly, the gold-polymer nanohybrids also demonstrated great potential as fluorescent live-imaging probes in vitro. This innovative material design based on the temperature-dependent, self-assembly of gold nanoclusters within a polymeric micelle's core shows great promise toward bioassays, nanosensors, and nanomedicine.


Assuntos
Substâncias Luminescentes/química , Nanopartículas Metálicas/química , Resinas Acrílicas/química , Ouro/química , Células Hep G2 , Humanos , Interações Hidrofóbicas e Hidrofílicas , Micelas , Polietilenoglicóis/química , Polimerização
3.
Biomacromolecules ; 19(9): 3766-3775, 2018 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-30102855

RESUMO

In this study, native chemical ligation (NCL) was used as a selective cross-linking method to form core-cross-linked thermosensitive polymeric micelles for drug delivery applications. To this end, two complementary ABA triblock copolymers having polyethylene glycol (PEG) as midblock were synthesized by atom transfer radical polymerization (ATRP). The thermosensitive poly isopropylacrylamide (PNIPAM) outer blocks of the polymers were copolymerized with either N-(2-hydroxypropyl)methacrylamide-cysteine (HPMA-Cys), P(NIPAM- co-HPMA-Cys)-PEG-P(NIPAM- co-HPMA-Cys) (PNC) or N-(2-hydroxypropyl)methacrylamide-ethylthioglycolate succinic acid (HPMA-ETSA), P(NIPAM- co-HPMA-ETSA)-PEG-P(NIPAM- co-HPMA-ETSA) (PNE). Mixing of these polymers in aqueous solution followed by heating to 50 °C resulted in the formation of thermosensitive flower-like micelles. Subsequently, native chemical ligation in the core of micelles resulted in stabilization of the micelles with a Z-average of 65 nm at body temperature. Decreasing the temperature to 10 °C only affected the size of the micelles (increased to 90 nm) but hardly affected the polydispersity index (PDI) and aggregation number ( Nagg) confirming covalent stabilization of the micelles by NCL. CryoTEM images showed micelles with an uniform spherical shape and dark patches close to the corona of micelles were observed in the tomographic view. The dark patches represent more dense areas in the micelles which coincide with the higher content of HPMA-Cys/ETSA close to the PEG chain revealed by the polymerization kinetics study. Notably, this cross-linking method provides the possibility for conjugation of functional molecules either by using the thiol moieties still present after NCL or by simply adjusting the molar ratio between the polymers (resulting in excess cysteine or thioester moieties) during micelle formation. Furthermore, in vitro cell experiments demonstrated that fluorescently labeled micelles were successfully taken up by HeLa cells while cell viability remained high even at high micelle concentrations. These results demonstrate the potential of these micelles for drug delivery applications.


Assuntos
Reagentes de Ligações Cruzadas/química , Portadores de Fármacos/síntese química , Micelas , Resinas Acrílicas/química , Células HeLa , Humanos , Metacrilatos/química , Polietilenoglicóis/química , Coroa de Proteína/química , Temperatura , Tioglicolatos/química
4.
Proc Natl Acad Sci U S A ; 112(7): 1959-64, 2015 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-25653336

RESUMO

Gold quantum dots exhibit distinctive optical and magnetic behaviors compared with larger gold nanoparticles. However, their unfavorable interaction with living systems and lack of stability in aqueous solvents has so far prevented their adoption in biology and medicine. Here, a simple synthetic pathway integrates gold quantum dots within a mesoporous silica shell, alongside larger gold nanoparticles within the shell's central cavity. This "quantum rattle" structure is stable in aqueous solutions, does not elicit cell toxicity, preserves the attractive near-infrared photonics and paramagnetism of gold quantum dots, and enhances the drug-carrier performance of the silica shell. In vivo, the quantum rattles reduced tumor burden in a single course of photothermal therapy while coupling three complementary imaging modalities: near-infrared fluorescence, photoacoustic, and magnetic resonance imaging. The incorporation of gold within the quantum rattles significantly enhanced the drug-carrier performance of the silica shell. This innovative material design based on the mutually beneficial interaction of gold and silica introduces the use of gold quantum dots for imaging and therapeutic applications.


Assuntos
Ouro/química , Imagem Multimodal , Pontos Quânticos , Dióxido de Silício/química , Células HeLa , Humanos , Microscopia Eletrônica de Transmissão , Fototerapia
5.
Macromol Rapid Commun ; 37(23): 1952-1959, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27643998

RESUMO

Hydrogels are widely recognized as promising candidates for various biomedical applications, such as tissue engineering. Recently, extensive research efforts have been devoted to the improvement of the biological and mechanical performance of hydrogel systems by incorporation of functional groups and/or inorganic particles in their composition. Bisphosphonates are a class of drugs, commonly used for treatment of osteoporosis, which exhibit a strong binding affinity for hydroxyapatite. In this study, the binding affinity of a bisphosphonate-functionalized polymer, hyaluronan, toward a bioactive glass (i.e., 45S5 Bioglass) is evaluated using force-distance measurements with atomic force microscopy. The strong interaction between bisphosphonate and bioactive glass is then exploited to develop organic-inorganic composite hydrogels and the viscoelastic and self-healing ability of these materials are investigated. Finally, the stability and mineralization behavior of these hydrogels are evaluated in simulated body fluid. Following this approach, injectable, bioactive and self-healing organic-inorganic composite hydrogels are produced, which mineralize abundantly and rapidly in simulated body fluid. These properties render these composite gels suitable for applications in bone-tissue engineering.


Assuntos
Materiais Biocompatíveis/química , Cerâmica/química , Vidro/química , Hidrogéis/química , Ácido Hialurônico/química , Tamanho da Partícula , Propriedades de Superfície
7.
Macromolecules ; 50(21): 8390-8397, 2017 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-29151618

RESUMO

ABC triblock copolymers with a poly(ethylene glycol) (PEG) midblock have attractive properties for biomedical applications because of PEG's favorable properties regarding biocompatibility and hydrophilicity. However, easy strategies to synthesize polymers containing a PEG midblock are limited. In this study, the successful synthesis of a heterofunctional PEG macroinitiator containing both an azoinitiator and an atom transfer radical polymerization (ATRP) initiator is demonstrated. This novel PEG macroinitiator allows the development of elegant synthesis routes for PEG midblock-containing ABC copolymers that does not require protection of initiating sites or polymer end-group postmodification. Polymers with outer blocks composed of different monomers were synthesized to illustrate the versatility of this macroinitiator. N-Isopropylacrylamide (NIPAM) was included to obtain thermosensitive polymers, 2-(dimethylamino)ethyl methacrylate (DMAEMA) provided pH-sensitive properties, and 2-hydroxyethyl acrylate (HEA) functioned as a noncharged hydrophilic block that also allows for postmodifications reactions. This synthesis approach can further contribute to the design of high-precision polymers with tailorable block compositions and polymer topologies, which is highly attractive for applications in nanotechnology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA