Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
J Synchrotron Radiat ; 31(Pt 1): 162-176, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37933848

RESUMO

The SIRIUS beamline of Synchrotron SOLEIL is dedicated to X-ray scattering and spectroscopy of surfaces and interfaces, covering the tender to mid-hard X-ray range (1.1-13 keV). The beamline has hosted a wide range of experiments in the field of soft interfaces and beyond, providing various grazing-incidence techniques such as diffraction and wide-angle scattering (GIXD/GIWAXS), small-angle scattering (GISAXS) and X-ray fluorescence in total reflection (TXRF). SIRIUS also offers specific sample environments tailored for in situ complementary experiments on solid and liquid surfaces. Recently, the beamline has added compound refractive lenses associated with a transfocator, allowing for the X-ray beam to be focused down to 10 µm × 10 µm while maintaining a reasonable flux on the sample. This new feature opens up new possibilities for faster GIXD measurements at the liquid-air interface and for measurements on samples with narrow geometries.

2.
Langmuir ; 40(1): 84-90, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38128069

RESUMO

Many ionic surfactants, such as sodium dodecyl sulfate (SDS) crystallize out of solution if the temperature falls below the crystallization boundary. The crystallization temperature is impacted by solution properties and can be decreased with the addition of salt. We studied SDS crystallization at liquid/vapor interfaces from solutions at high ionic strength (sodium chloride). We show that the surfactant crystals at the surface grow from adsorbed SDS molecules, as evidenced by the preferential orientation of the crystals identified by using grazing incidence X-ray diffraction. We find a unique time scale for the crystal growth from the evolution of structure, surface tension, and visual inspection, which can be controlled through varying the SDS or NaCl concentrations.

3.
Phys Chem Chem Phys ; 25(7): 5648-5655, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36734112

RESUMO

Grazing incidence wide angle X-ray scattering measurements on aligned titanium oxide nanowires displaying anisotropic optical-electronic properties are carried out. Elemental and thermal analyses provide a chemical composition corresponding to H2Ti3O7·nH2O with n ≈ 1 while the crystallographic data indicate a monoclinic cell with a lamellar substructure. Cell parameters are close to those of H2Ti3O7 notwithstanding a doubling of the lattice in the layer plane. A comparison of the band gap energy values and the electronic transition modes between the two polymorphs displays differences that could be ascribed to the structural variation.

4.
Soft Matter ; 17(23): 5806-5814, 2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34032258

RESUMO

The mechanical properties of a disordered heterogeneous medium depend, in general, on a complex interplay between multiple length scales. Connecting local interactions to macroscopic observables, such as stiffness or fracture, is thus challenging in this type of material. Here, we study the properties of a cohesive granular material composed of glass beads held together by soft polymer bridges. We characterise the mechanical response of single bridges under traction and shear, using a setup based on the deflection of flexible micropipettes. These measurements, along with information from X-ray microtomograms of the granular packings, then inform large-scale discrete element model (DEM) simulations. Although simple, these simulations are constrained in every way by empirical measurement and accurately predict mechanical responses of the aggregates, including details on their compressive failure, and how the material's stiffness depends on the stiffness and geometry of its parts. By demonstrating how to accurately relate microscopic information to macroscopic properties, these results provide new perspectives for predicting the behaviour of complex disordered materials, such as porous rock, snow, or foam.

5.
Nano Lett ; 18(10): 6544-6550, 2018 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-30179011

RESUMO

There are very few techniques to reconstruct the shape of a cell at nanometric resolution, and those that exist are almost exclusively based on fluorescence, implying limitations due to staining constraints and artifacts. Reflection interference contrast microscopy (RICM), a label-free technique, permits the measurement of nanometric distances between refractive objects. However, its quantitative application to cells has been largely limited due to the complex interferometric pattern caused by multiple reflections on internal or thin structures like lamellipodia. Here we introduce 3D reflection interference contrast nanoscopy, 3D-RICN, which combines information from multiple illumination wavelengths and aperture angles to characterize the lamellipodial region of an adherent cell in terms of its distance from the surface and its thickness. We validate this new method by comparing data obtained on fixed cells imaged with atomic force microscopy and quantitative phase imaging. We show that as expected, cells adhering to micropatterns exhibit a radial symmetry for the lamellipodial thickness. We demonstrate that the substrate-lamellipod distance may be as high as 100 nm. We also show how the method applies to living cells, opening the way for label-free dynamical study of cell structures with nanometric resolution.

6.
Soft Matter ; 13(5): 1040-1047, 2017 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-28084491

RESUMO

We study experimentally the fracture mechanisms of a model cohesive granular medium consisting of glass beads held together by solidified polymer bridges. The elastic response of this material can be controlled by changing the cross-linking of the polymer phase, for example. Here we show that its fracture toughness can be tuned over an order of magnitude by adjusting the stiffness and size of the polymer bridges. We extract a well-defined fracture energy from fracture testing under a range of material preparations. This energy is found to scale linearly with the cross-sectional area of the bridges. Finally, X-ray microcomputed tomography shows that crack propagation is driven by adhesive failure of about one polymer bridge per bead located at the interface, along with microcracks in the vicinity of the failure plane. Our findings provide insight into the fracture mechanisms of this model material, and the mechanical properties of disordered cohesive granular media in general.

7.
Phys Rev Lett ; 116(22): 228101, 2016 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-27314739

RESUMO

The effect of ac electric fields on the elasticity of supported lipid bilayers is investigated at the microscopic level using grazing incidence synchrotron x-ray scattering. A strong decrease in the membrane tension up to 1 mN/m and a dramatic increase of its effective rigidity up to 300 k_{B}T are observed for local electric potentials seen by the membrane ≲1 V. The experimental results are analyzed using detailed electrokinetic modeling and nonlinear Poisson-Boltzmann theory. Based on a modeling of the electromagnetic stress, which provides an accurate description of the bilayer separation versus pressure curves, we show that the decrease in tension results from the amplification of charge fluctuations on the membrane surface whereas the increase in bending rigidity results from the direct interaction between charges in the electric double layer. These effects eventually lead to a destabilization of the bilayer and vesicle formation. Similar effects are expected at the tens of nanometers length scale in cell membranes with lower tension, and could explain a number of electrically driven processes.


Assuntos
Membrana Celular/química , Bicamadas Lipídicas , Membrana Celular/fisiologia , Elasticidade , Lipídeos de Membrana , Radiografia , Raios X
8.
Proc Natl Acad Sci U S A ; 109(49): 19938-42, 2012 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-23169650

RESUMO

Understanding interactions between membranes requires measurements on well-controlled systems close to natural conditions, in which fluctuations play an important role. We have determined, by grazing incidence X-ray scattering, the interaction potential between two lipid bilayers, one adsorbed on a solid surface and the other floating close by. We find that interactions in this highly hydrated model system are two orders of magnitude softer than in previously reported work on multilayer stacks. This is attributed to the weak electrostatic repulsion due to the small fraction of ionized lipids in supported bilayers with a lower number of defects. Our data are consistent with the Poisson-Boltzmann theory, in the regime where repulsion is dominated by the entropy of counter ions. We also have unique access to very weak entropic repulsion potentials, which allowed us to discriminate between the various models proposed in the literature. We further demonstrate that the interaction potential between supported bilayers can be tuned at will by applying osmotic pressure, providing a way to manipulate these model membranes, thus considerably enlarging the range of biological or physical problems that can be addressed.


Assuntos
Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Modelos Químicos , Pressão Osmótica , Eletricidade Estática , Entropia , Espalhamento de Radiação
9.
Adv Mater ; 36(5): e2307547, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38030567

RESUMO

Interfaces in perovskite solar cells (PSCs) play a pivotal role in determining device performance by influencing charge transport and recombination. Understanding the physical processes at these interfaces is essential for achieving high-power conversion efficiency in PSCs. Particularly, the interfaces involving oxide-based transport layers are susceptible to defects like dangling bonds, excess oxygen, or oxygen deficiency. To address this issue, the surface of NiOx is passivated using octadecylphosphonic acid (ODPA), resulting in improved charge transport across the perovskite hole transport layer (HTL) interface. This surface treatment has led to the development of hysteresis-free devices with an impressive ≈13% increase in power conversion efficiency. Computational studies have explored the halide perovskite architecture of ODPA-treated HTL/Perovskite, aiming to unlock superior photovoltaic performance. The ODPA surface functionalization has demonstrated enhanced device performance, characterized by superior charge exchange capacity. Moreover, higher band-to-band recombination in photoluminescence and electroluminescence indicates presence of lower mid-gap energy states, thereby increasing the effective photogenerated carrier density. These findings are expected to promote the utilization of various phosphonic acid-based self-assembly monolayers for surface passivation of oxide-based transport layers in perovskite solar cells. Ultimately, this research contributes to the realization of efficient halide PSCs by harnessing the favorable architecture of NiOx interfaces.

10.
J Phys Chem Lett ; 15(1): 316-322, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38170161

RESUMO

The tear film lipid layer (TFLL) is a unique biological membrane that serves a pivotal role in the maintenance of ocular surface health. Reaching an overarching understanding of the functional principle of the TFLL has been hampered by a lack of insights into the structural and functional roles played by individual lipid classes. To bridge this knowledge gap, we herein focus on studying films formed by principal lipid classes by surface scattering methods. Through grazing incidence X-ray diffraction and X-ray reflectivity studies, we reveal quantitative data about the lattice distances, molecular tilt angles, and mono/multilayer thickness and density profiles for central TFLL lipid classes under close to simulated physiological conditions. In addition, we discuss the correlation of the results to those obtained previously with the natural lipid composition of meibum.


Assuntos
Lipídeos , Lágrimas , Lágrimas/química , Lágrimas/fisiologia , Lipídeos/química , Estrutura Molecular , Raios X , Difração de Raios X
11.
ACS Nano ; 18(23): 15067-15083, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38804165

RESUMO

Processes of water condensation and desublimation on solid surfaces are ubiquitous in nature and essential for various industrial applications, which are crucial for their performance. Despite their significance, these processes are not well understood due to the lack of methods that can provide insight at the nanolevel into the very first stages of phase transitions. Taking advantage of synchrotron grazing-incidence wide-angle X-ray scattering (GIWAXS) and environmental scanning electron microscopy (ESEM), two pathways of the frosting process from supersaturated vapors were studied in real time for substrates with different wettabilities ranging from highly hydrophilic to superhydrophobic. Within GIWAXS, a fully quantitative structural and orientational characterization of the undergoing phase transition reveals the information on degree of crystallinity of the new phase and determines the ordering at the surfaces and inside the films at the initial stages of water/ice nucleation from vapor onto the substrates. The diversity of frosting scenarios, including direct desublimation from the vapor and two-stage condensation-freezing processes, was observed by both GIWAXS and ESEM for different combinations of substrate wettability and vapor supersaturations. The classical nucleation theory straightforwardly predicts the pathway of the phase transition for hydrophobic and superhydrophobic substrates. The case of hydrophilic substrates is more intricate because the barriers in Gibbs free energy for nucleating both liquid and solid embryos are close to each other and comparable to thermal energy kBT. At that end, classical nucleation theory allows concluding a relation between contact angles for ice and water embryos on the basis of the observed frosting pathway.

12.
J Colloid Interface Sci ; 598: 464-473, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-33951546

RESUMO

HYPOTHESIS: Interaction of cellular membranes with biointerfaces is of vital importance for a number of medical devices and implants. Adhesiveness of these surfaces and cells is often regulated by depositing a layer of bovine serum albumin (BSA) or other protein coatings. However, anomalously large separations between phospholipid membranes and the biointerfaces in various conditions and buffers have been observed, which could not be understood using available theoretical arguments. METHODS: Using the Lifshitz theory, we here evaluate the distance-dependent Hamaker coefficient describing the dispersion interaction between a biointerface and a membrane to understand the relative positioning of two surfaces. Our theoretical modeling is supported by experiments where the biointerface is represented by a glass substrate with deposited BSA and protein layers. These biointerfaces are allowed to interact with giant unilamellar vesicles decorated with polyethylene glycol (PEG) using PEG lipids to mimic cellular membranes and their pericellular coat. RESULTS: We demonstrate that careful treatment of the van der Waals interactions is critical for explaining the lack of adhesiveness of the membranes with protein-decorated biointerfaces. We show that BSA alone indeed passivates the glass, but depositing an additional protein layer on the surface BSA, or producing multiple layers of proteins and BSA results in repulsive dispersion forces responsible for 100 nm large equilibrium separations between the two surfaces.


Assuntos
Polietilenoglicóis , Soroalbumina Bovina , Adesividade , Vidro
13.
J Colloid Interface Sci ; 597: 370-382, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33894545

RESUMO

The proton pump transmembrane protein bacteriorhodopsin was successfully incorporated into planar floating lipid bilayers in gel and fluid phases, by applying a detergent-mediated incorporation method. The method was optimized on single supported bilayers by using quartz crystal microbalance, atomic force and fluorescence microscopy techniques. Neutron and X-ray reflectometry were used on both single and floating bilayers with the aim of determining the structure and composition of this membrane-protein system before and after protein reconstitution at sub-nanometer resolution. Lipid bilayer integrity and protein activity were preserved upon the reconstitution process. Reversible structural modifications of the membrane, induced by the bacteriorhodopsin functional activity triggered by visible light, were observed and characterized at the nanoscale.


Assuntos
Bacteriorodopsinas , Bicamadas Lipídicas , Nêutrons , Técnicas de Microbalança de Cristal de Quartzo
14.
J Phys Chem Lett ; 10(22): 7195-7199, 2019 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-31679335

RESUMO

We investigate the interaction between highly charged lipid bilayers in the presence of monovalent counterions. Neutron and X-ray reflectivity experiments show that the water layer between like-charged bilayers is thinner than for zwitterionic lipids, demonstrating the existence of counterintuitive electrostatic attractive interaction between them. Such attraction can be explained by taking into account the correlations between counterions within the Strong Coupling limit, which falls beyond the classical Poisson-Boltzmann theory of electrostatics. Our results show the limit of the Strong Coupling continuous theory in a highly confined geometry and are in agreement with a decrease in the water dielectric constant due to a surface charge-induced orientation of water molecules.

15.
Sci Rep ; 6: 35650, 2016 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-27774988

RESUMO

By mixing glass beads with a curable polymer we create a well-defined cohesive granular medium, held together by solidified, and hence elastic, capillary bridges. This material has a geometry similar to a wet packing of beads, but with an additional control over the elasticity of the bonds holding the particles together. We show that its mechanical response can be varied over several orders of magnitude by adjusting the size and stiffness of the bridges, and the size of the particles. We also investigate its mechanism of failure under unconfined uniaxial compression in combination with in situ x-ray microtomography. We show that a broad linear-elastic regime ends at a limiting strain of about 8%, whatever the stiffness of the agglomerate, which corresponds to the beginning of shear failure. The possibility to finely tune the stiffness, size and shape of this simple material makes it an ideal model system for investigations on, for example, fracturing of porous rocks, seismology, or root growth in cohesive porous media.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA