Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 172(5): 924-936.e11, 2018 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-29474920

RESUMO

Certain mutations can cause proteins to accumulate in neurons, leading to neurodegeneration. We recently showed, however, that upregulation of a wild-type protein, Ataxin1, caused by haploinsufficiency of its repressor, the RNA-binding protein Pumilio1 (PUM1), also causes neurodegeneration in mice. We therefore searched for human patients with PUM1 mutations. We identified eleven individuals with either PUM1 deletions or de novo missense variants who suffer a developmental syndrome (Pumilio1-associated developmental disability, ataxia, and seizure; PADDAS). We also identified a milder missense mutation in a family with adult-onset ataxia with incomplete penetrance (Pumilio1-related cerebellar ataxia, PRCA). Studies in patient-derived cells revealed that the missense mutations reduced PUM1 protein levels by ∼25% in the adult-onset cases and by ∼50% in the infantile-onset cases; levels of known PUM1 targets increased accordingly. Changes in protein levels thus track with phenotypic severity, and identifying posttranscriptional modulators of protein expression should identify new candidate disease genes.


Assuntos
Deficiências do Desenvolvimento/genética , Predisposição Genética para Doença , Haploinsuficiência/genética , Mutação/genética , Proteínas de Ligação a RNA/genética , Convulsões/genética , Adolescente , Adulto , Idade de Início , Idoso de 80 Anos ou mais , Animais , Sequência de Bases , Criança , Pré-Escolar , Deficiências do Desenvolvimento/diagnóstico por imagem , Evolução Molecular , Feminino , Deleção de Genes , Células HEK293 , Humanos , Lactente , Masculino , Camundongos , Pessoa de Meia-Idade , Mutação de Sentido Incorreto/genética , Neurônios/metabolismo , Neurônios/patologia , Linhagem , Estabilidade Proteica , Convulsões/diagnóstico por imagem
2.
J Med Genet ; 61(3): 289-293, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-37833060

RESUMO

BACKGROUND: Neurodevelopmental disorders (NDDs) impact both the development and functioning of the brain and exhibit clinical and genetic variability. RAP and RAB proteins, belonging to the RAS superfamily, are identified as established contributors to NDDs. However, the involvement of SGSM (small G protein signalling modulator), another member of the RAS family, in NDDs has not been previously documented. METHODS: Proband-only or trio exome sequencing was performed on DNA samples obtained from affected individuals and available family members. The variant prioritisation process focused on identifying rare deleterious variants. International collaboration aided in the identification of additional affected individuals. RESULTS: We identified 13 patients from 8 families of Ashkenazi Jewish origin who all carried the same homozygous frameshift variant in SGSM3 gene. The variant was predicted to cause a loss of function, potentially leading to impaired protein structure or function. The variant co-segregated with the disease in all available family members. The affected individuals displayed mild global developmental delay and mild to moderate intellectual disability. Additional prevalent phenotypes observed included hypotonia, behavioural challenges and short stature. CONCLUSIONS: An Ashkenazi Jewish homozygous founder variant in SGSM3 was discovered in individuals with NDDs and short stature. This finding establishes a connection between another member of the RAS family and NDDs. Additional research is needed to uncover the specific molecular mechanisms by which SGSM3 influences neurodevelopmental processes and the regulation of growth.


Assuntos
Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Humanos , Deficiência Intelectual/genética , Judeus/genética , Homozigoto , Síndrome
3.
J Med Genet ; 60(5): 498-504, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36241386

RESUMO

BACKGROUND: Cleidocranial dysplasia (CCD) is a rare skeletal dysplasia with significant clinical variability. Patients with CCD typically present with delayed closure of fontanels and cranial sutures, dental anomalies, clavicular hypoplasia or aplasia and short stature. Runt-related transcription factor 2 (RUNX2) is currently the only known disease-causing gene for CCD, but several studies have suggested locus heterogeneity. METHODS: The cohort consists of eight subjects from five unrelated families partially identified through GeneMatcher. Exome or genome sequencing was applied and in two subjects the effect of the variant was investigated at RNA level. RESULTS: In each subject a heterozygous pathogenic variant in CBFB was detected, whereas no genomic alteration involving RUNX2 was found. Three CBFB variants (one splice site alteration, one nonsense variant, one 2 bp duplication) were shown to result in a premature stop codon. A large intragenic deletion was found to delete exon 4, without affecting CBFB expression. The effect of a second splice site variant could not be determined but most likely results in a shortened or absent protein. Affected individuals showed similarities with RUNX2-related CCD, including dental and clavicular abnormalities. Normal stature and neurocognitive problems were however distinguishing features. CBFB encodes the core-binding factor ß subunit, which can interact with all RUNX proteins (RUNX1, RUNX2, RUNX3) to form heterodimeric transcription factors. This may explain the phenotypic differences between CBFB-related and RUNX2-related CCD. CONCLUSION: We confirm the previously suggested locus heterogeneity for CCD by identifying five pathogenic variants in CBFB in a cohort of eight individuals with clinical and radiographic features reminiscent of CCD.


Assuntos
Displasia Cleidocraniana , Subunidade beta de Fator de Ligação ao Core , Humanos , Sequência de Bases , Displasia Cleidocraniana/genética , Displasia Cleidocraniana/patologia , Códon sem Sentido , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade beta de Fator de Ligação ao Core/genética , Éxons
4.
Am J Hum Genet ; 107(2): 311-324, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32738225

RESUMO

Aminoacyl-tRNA synthetases (ARSs) are ubiquitous, ancient enzymes that charge amino acids to cognate tRNA molecules, the essential first step of protein translation. Here, we describe 32 individuals from 21 families, presenting with microcephaly, neurodevelopmental delay, seizures, peripheral neuropathy, and ataxia, with de novo heterozygous and bi-allelic mutations in asparaginyl-tRNA synthetase (NARS1). We demonstrate a reduction in NARS1 mRNA expression as well as in NARS1 enzyme levels and activity in both individual fibroblasts and induced neural progenitor cells (iNPCs). Molecular modeling of the recessive c.1633C>T (p.Arg545Cys) variant shows weaker spatial positioning and tRNA selectivity. We conclude that de novo and bi-allelic mutations in NARS1 are a significant cause of neurodevelopmental disease, where the mechanism for de novo variants could be toxic gain-of-function and for recessive variants, partial loss-of-function.


Assuntos
Aspartato-tRNA Ligase/genética , Mutação com Ganho de Função/genética , Mutação com Perda de Função/genética , Transtornos do Neurodesenvolvimento/genética , Aminoacil-RNA de Transferência/genética , Alelos , Aminoacil-tRNA Sintetases/genética , Linhagem Celular , Feminino , Predisposição Genética para Doença/genética , Humanos , Masculino , Linhagem , RNA de Transferência/genética , Células-Tronco/fisiologia
5.
Am J Hum Genet ; 106(6): 830-845, 2020 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-32442410

RESUMO

SOX6 belongs to a family of 20 SRY-related HMG-box-containing (SOX) genes that encode transcription factors controlling cell fate and differentiation in many developmental and adult processes. For SOX6, these processes include, but are not limited to, neurogenesis and skeletogenesis. Variants in half of the SOX genes have been shown to cause severe developmental and adult syndromes, referred to as SOXopathies. We here provide evidence that SOX6 variants also cause a SOXopathy. Using clinical and genetic data, we identify 19 individuals harboring various types of SOX6 alterations and exhibiting developmental delay and/or intellectual disability; the individuals are from 17 unrelated families. Additional, inconstant features include attention-deficit/hyperactivity disorder (ADHD), autism, mild facial dysmorphism, craniosynostosis, and multiple osteochondromas. All variants are heterozygous. Fourteen are de novo, one is inherited from a mosaic father, and four offspring from two families have a paternally inherited variant. Intragenic microdeletions, balanced structural rearrangements, frameshifts, and nonsense variants are predicted to inactivate the SOX6 variant allele. Four missense variants occur in residues and protein regions highly conserved evolutionarily. These variants are not detected in the gnomAD control cohort, and the amino acid substitutions are predicted to be damaging. Two of these variants are located in the HMG domain and abolish SOX6 transcriptional activity in vitro. No clear genotype-phenotype correlations are found. Taken together, these findings concur that SOX6 haploinsufficiency leads to a neurodevelopmental SOXopathy that often includes ADHD and abnormal skeletal and other features.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/genética , Craniossinostoses/genética , Transtornos do Neurodesenvolvimento/genética , Osteocondroma/genética , Fatores de Transcrição SOXD/genética , Transporte Ativo do Núcleo Celular , Adolescente , Sequência de Aminoácidos , Sequência de Bases , Encéfalo/embriologia , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Criança , Pré-Escolar , Simulação por Computador , Feminino , Variação Estrutural do Genoma/genética , Humanos , Lactente , Masculino , Mutação de Sentido Incorreto , Transtornos do Neurodesenvolvimento/diagnóstico , RNA-Seq , Fatores de Transcrição SOXD/química , Fatores de Transcrição SOXD/metabolismo , Síndrome , Transcrição Gênica , Transcriptoma , Translocação Genética/genética
6.
Ann Neurol ; 92(6): 958-973, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36073542

RESUMO

OBJECTIVE: Rare inherited missense variants in SLC32A1, the gene that encodes the vesicular gamma-aminobutyric acid (GABA) transporter, have recently been shown to cause genetic epilepsy with febrile seizures plus. We aimed to clarify if de novo missense variants in SLC32A1 can also cause epilepsy with impaired neurodevelopment. METHODS: Using exome sequencing, we identified four individuals with a developmental and epileptic encephalopathy and de novo missense variants in SLC32A1. To assess causality, we performed functional evaluation of the identified variants in a murine neuronal cell culture model. RESULTS: The main phenotype comprises moderate-to-severe intellectual disability, infantile-onset epilepsy within the first 18 months of life, and a choreiform, dystonic, or dyskinetic movement disorder. In silico modeling and functional analyses reveal that three of these variants, which are located in helices that line the putative GABA transport pathway, result in reduced quantal size, consistent with impaired filling of synaptic vesicles with GABA. The fourth variant, located in the vesicular gamma-aminobutyric acid N-terminus, does not affect quantal size, but increases presynaptic release probability, leading to more severe synaptic depression during high-frequency stimulation. Thus, variants in vesicular gamma-aminobutyric acid can impair GABAergic neurotransmission through at least two mechanisms, by affecting synaptic vesicle filling and by altering synaptic short-term plasticity. INTERPRETATION: This work establishes de novo missense variants in SLC32A1 as a novel cause of a developmental and epileptic encephalopathy. SUMMARY FOR SOCIAL MEDIA IF PUBLISHED: @platzer_k @lemke_johannes @RamiJamra @Nirgalito @GeneDx The SLC family 32 Member 1 (SLC32A1) is the only protein identified to date, that loads gamma-aminobutyric acid (GABA) and glycine into synaptic vesicles, and is therefore also known as the vesicular GABA transporter (VGAT) or vesicular inhibitory amino acid transporter (VIAAT). Rare inherited missense variants in SLC32A1, the gene that encodes VGAT/vesicular inhibitory amino acid transporter, have recently been shown to cause genetic epilepsy with febrile seizures plus. We aimed to clarify if de novo missense variants in SLC32A1 can also cause epilepsy with impaired neurodevelopment. We report on four individuals with de novo missense variants in SLC32A1 and a developmental and epileptic encephalopathy with infantile onset epilepsy. We establish causality of the variants via in silico modeling and their functional evaluation in a murine neuronal cell culture model. SLC32A1 variants represent a novel genetic etiology in neurodevelopmental disorders with epilepsy and a new GABA-related disease mechanism. ANN NEUROL 2022;92:958-973.


Assuntos
Epilepsia Generalizada , Epilepsia , Convulsões Febris , Animais , Camundongos , Epilepsia Generalizada/genética , Epilepsia/genética , Transmissão Sináptica/genética , Ácido gama-Aminobutírico/metabolismo , Sistemas de Transporte de Aminoácidos/metabolismo
7.
Am J Med Genet A ; 191(7): 1935-1941, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37031378

RESUMO

Autosomal recessive microcephaly and chorioretinopathy-1 (MCCRP1) is a rare Mendelian disorder resulting from biallelic loss of function variants in Tubulin-Gamma Complex Associated Protein 6 (TUBGCP6, MIM#610053). Clinical features of this disorder include microcephaly, cognitive impairment, dysmorphic features, and variable ophthalmological anomalies including chorioretinopathy. Microcephaly can be recognized prenatally and visual impairment becomes evident during the first year of life. The clinical presentation resembles the findings in some acquired conditions such as congenital toxoplasmosis and cytomegalovirus infections; thus, it is important to recognize and diagnose this syndrome in view of its impact on patient health management and familial reproductive plans. To date, only seven molecularly confirmed patients from five unrelated families have been reported. We report an additional four unrelated patients with TUBGCP6 variants including one prenatal diagnosis and review the clinical phenotypes and genotypes of all the known cases. This report expands the molecular and phenotypic spectrum of TUBGCP6 and includes additional prenatal findings associated with MCCRP1.


Assuntos
Microcefalia , Doenças Retinianas , Gravidez , Humanos , Feminino , Microcefalia/diagnóstico , Microcefalia/genética , Microcefalia/complicações , Genótipo , Fenótipo , Proteínas Associadas aos Microtúbulos/genética
8.
Int J Mol Sci ; 24(10)2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37240244

RESUMO

Hearing loss and peripheral neuropathy are two clinical entities that are genetically and phenotypically heterogeneous and sometimes co-occurring. Using exome sequencing and targeted segregation analysis, we investigated the genetic etiology of peripheral neuropathy and hearing loss in a large Ashkenazi Jewish family. Moreover, we assessed the production of the candidate protein via western blotting of lysates from fibroblasts from an affected individual and an unaffected control. Pathogenic variants in known disease genes associated with hearing loss and peripheral neuropathy were excluded. A homozygous frameshift variant in the BICD1 gene, c.1683dup (p.(Arg562Thrfs*18)), was identified in the proband and segregated with hearing loss and peripheral neuropathy in the family. The BIDC1 RNA analysis from patient fibroblasts showed a modest reduction in gene transcripts compared to the controls. In contrast, protein could not be detected in fibroblasts from a homozygous c.1683dup individual, whereas BICD1 was detected in an unaffected individual. Our findings indicate that bi-allelic loss-of-function variants in BICD1 are associated with hearing loss and peripheral neuropathy. Definitive evidence that bi-allelic loss-of-function variants in BICD1 cause peripheral neuropathy and hearing loss will require the identification of other families and individuals with similar variants with the same phenotype.


Assuntos
Surdez , Perda Auditiva , Doenças do Sistema Nervoso Periférico , Humanos , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas do Citoesqueleto/genética , Surdez/genética , Perda Auditiva/genética , Linhagem , Doenças do Sistema Nervoso Periférico/genética , Fenótipo
9.
Am J Hum Genet ; 104(3): 542-552, 2019 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-30827498

RESUMO

Polyglutamine expansions in the transcriptional co-repressor Atrophin-1, encoded by ATN1, cause the neurodegenerative condition dentatorubral-pallidoluysian atrophy (DRPLA) via a proposed novel toxic gain of function. We present detailed phenotypic information on eight unrelated individuals who have de novo missense and insertion variants within a conserved 16-amino-acid "HX repeat" motif of ATN1. Each of the affected individuals has severe cognitive impairment and hypotonia, a recognizable facial gestalt, and variable congenital anomalies. However, they lack the progressive symptoms typical of DRPLA neurodegeneration. To distinguish this subset of affected individuals from the DRPLA diagnosis, we suggest using the term CHEDDA (congenital hypotonia, epilepsy, developmental delay, digit abnormalities) to classify the condition. CHEDDA-related variants alter the particular structural features of the HX repeat motif, suggesting that CHEDDA results from perturbation of the structural and functional integrity of the HX repeat. We found several non-homologous human genes containing similar motifs of eight to 10 HX repeat sequences, including RERE, where disruptive variants in this motif have also been linked to a separate condition that causes neurocognitive and congenital anomalies. These findings suggest that perturbation of the HX motif might explain other Mendelian human conditions.


Assuntos
Motivos de Aminoácidos/genética , Variação Genética , Proteínas do Tecido Nervoso/genética , Transtornos Neurocognitivos/etiologia , Sequências Repetitivas de Ácido Nucleico , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Transtornos Neurocognitivos/classificação , Transtornos Neurocognitivos/patologia , Fenótipo , Prognóstico , Síndrome
10.
Hum Mutat ; 42(6): 685-693, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33783914

RESUMO

De novo, heterozygous, loss-of-function variants were identified in Pou domain, class 4, transcription factor 1 (POU4F1) via whole-exome sequencing in four independent probands presenting with ataxia, intention tremor, and hypotonia. POU4F1 is expressed in the developing nervous system, and mice homozygous for null alleles of Pou4f1 exhibit uncoordinated movements with newborns being unable to successfully right themselves to feed. Head magnetic resonance imaging of the four probands was reviewed and multiple abnormalities were noted, including significant cerebellar vermian atrophy and hypertrophic olivary degeneration in one proband. Transcriptional activation of the POU4F1 p.Gln306Arg protein was noted to be decreased when compared with wild type. These findings suggest that heterozygous, loss-of-function variants in POU4F1 are causative of a novel ataxia syndrome.


Assuntos
Ataxia/genética , Hipotonia Muscular/genética , Fator de Transcrição Brn-3A/genética , Tremor/genética , Adulto , Ataxia/complicações , Ataxia/diagnóstico , Ataxia/patologia , Criança , Pré-Escolar , Feminino , Haploinsuficiência , Humanos , Imageamento por Ressonância Magnética , Masculino , Hipotonia Muscular/complicações , Hipotonia Muscular/diagnóstico , Mutação de Sentido Incorreto , Estudos Retrospectivos , Síndrome , Tremor/complicações , Tremor/diagnóstico , Estados Unidos , Sequenciamento do Exoma , Adulto Jovem
11.
Am J Hum Genet ; 103(5): 786-793, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30343942

RESUMO

PCGF2 encodes the polycomb group ring finger 2 protein, a transcriptional repressor involved in cell proliferation, differentiation, and embryogenesis. PCGF2 is a component of the polycomb repressive complex 1 (PRC1), a multiprotein complex which controls gene silencing through histone modification and chromatin remodelling. We report the phenotypic characterization of 13 patients (11 unrelated individuals and a pair of monozygotic twins) with missense mutations in PCGF2. All the mutations affected the same highly conserved proline in PCGF2 and were de novo, excepting maternal mosaicism in one. The patients demonstrated a recognizable facial gestalt, intellectual disability, feeding problems, impaired growth, and a range of brain, cardiovascular, and skeletal abnormalities. Computer structural modeling suggests the substitutions alter an N-terminal loop of PCGF2 critical for histone biding. Mutant PCGF2 may have dominant-negative effects, sequestering PRC1 components into complexes that lack the ability to interact efficiently with histones. These findings demonstrate the important role of PCGF2 in human development and confirm that heterozygous substitutions of the Pro65 residue of PCGF2 cause a recognizable syndrome characterized by distinctive craniofacial, neurological, cardiovascular, and skeletal features.

12.
Clin Genet ; 99(2): 259-268, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33131045

RESUMO

The CAMTA1-associated phenotype was initially defined in patients with intragenic deletions and duplications who showed nonprogressive congenital ataxia, with or without intellectual disability. Here, we describe 10 individuals with CAMTA1 variants: nine previously unreported (likely) pathogenic variants comprising one missense, four frameshift and four nonsense variants, and one missense variant of unknown significance. Six patients were diagnosed following whole exome sequencing and four individuals with exome-based targeted panel analysis. Most of them present with developmental delay, manifesting in speech and motor delay. Other frequent findings are hypotonia, cognitive impairment, cerebellar dysfunction, oculomotor abnormalities, and behavioral problems. Feeding problems occur more frequently than previously observed. In addition, we present a systematic review of 19 previously published individuals with causal variants, including copy number, truncating, and missense variants. We note a tendency of more severe cognitive impairment and recurrent dysmorphic features in individuals with a copy number variant. Pathogenic variants are predominantly observed in and near the N- and C- terminal functional domains. Clinical heterogeneity is observed, but 3'-terminal variants seem to associate with less pronounced cerebellar dysfunction.


Assuntos
Proteínas de Ligação ao Cálcio/genética , Doenças do Sistema Nervoso/genética , Transativadores/genética , Adolescente , Criança , Pré-Escolar , Transtornos Cognitivos/genética , Análise Mutacional de DNA , Deficiências do Desenvolvimento/genética , Feminino , Humanos , Masculino , Fenótipo
13.
Am J Med Genet A ; 185(5): 1366-1378, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33522091

RESUMO

Neurodevelopmental disorder with dysmorphic facies and distal limb anomalies (NEDDFL), defined primarily by developmental delay/intellectual disability, speech delay, postnatal microcephaly, and dysmorphic features, is a syndrome resulting from heterozygous variants in the dosage-sensitive bromodomain PHD finger chromatin remodeler transcription factor BPTF gene. To date, only 11 individuals with NEDDFL due to de novo BPTF variants have been described. To expand the NEDDFL phenotypic spectrum, we describe the clinical features in 25 novel individuals with 20 distinct, clinically relevant variants in BPTF, including four individuals with inherited changes in BPTF. In addition to the previously described features, individuals in this cohort exhibited mild brain abnormalities, seizures, scoliosis, and a variety of ophthalmologic complications. These results further support the broad and multi-faceted complications due to haploinsufficiency of BPTF.


Assuntos
Montagem e Desmontagem da Cromatina/genética , Epilepsia/genética , Microcefalia/genética , Transtornos do Neurodesenvolvimento/genética , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/fisiopatologia , Adolescente , Adulto , Criança , Pré-Escolar , Deleção Cromossômica , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/fisiopatologia , Epilepsia/fisiopatologia , Fácies , Feminino , Haploinsuficiência/genética , Humanos , Lactente , Deficiência Intelectual/genética , Deficiência Intelectual/fisiopatologia , Transtornos do Desenvolvimento da Linguagem/genética , Transtornos do Desenvolvimento da Linguagem/fisiopatologia , Masculino , Microcefalia/fisiopatologia , Pessoa de Meia-Idade , Transtornos do Neurodesenvolvimento/fisiopatologia , Fenótipo , Fatores de Transcrição/genética , Adulto Jovem
14.
Brain ; 143(1): 55-68, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31834374

RESUMO

MN1 encodes a transcriptional co-regulator without homology to other proteins, previously implicated in acute myeloid leukaemia and development of the palate. Large deletions encompassing MN1 have been reported in individuals with variable neurodevelopmental anomalies and non-specific facial features. We identified a cluster of de novo truncating mutations in MN1 in a cohort of 23 individuals with strikingly similar dysmorphic facial features, especially midface hypoplasia, and intellectual disability with severe expressive language delay. Imaging revealed an atypical form of rhombencephalosynapsis, a distinctive brain malformation characterized by partial or complete loss of the cerebellar vermis with fusion of the cerebellar hemispheres, in 8/10 individuals. Rhombencephalosynapsis has no previously known definitive genetic or environmental causes. Other frequent features included perisylvian polymicrogyria, abnormal posterior clinoid processes and persistent trigeminal artery. MN1 is encoded by only two exons. All mutations, including the recurrent variant p.Arg1295* observed in 8/21 probands, fall in the terminal exon or the extreme 3' region of exon 1, and are therefore predicted to result in escape from nonsense-mediated mRNA decay. This was confirmed in fibroblasts from three individuals. We propose that the condition described here, MN1 C-terminal truncation (MCTT) syndrome, is not due to MN1 haploinsufficiency but rather is the result of dominantly acting C-terminally truncated MN1 protein. Our data show that MN1 plays a critical role in human craniofacial and brain development, and opens the door to understanding the biological mechanisms underlying rhombencephalosynapsis.


Assuntos
Anormalidades Múltiplas/genética , Anormalidades Craniofaciais/genética , Deficiência Intelectual/genética , Transtornos do Desenvolvimento da Linguagem/genética , Malformações do Sistema Nervoso/genética , Transativadores/genética , Proteínas Supressoras de Tumor/genética , Anormalidades Múltiplas/diagnóstico por imagem , Adolescente , Artéria Basilar/anormalidades , Artéria Basilar/diagnóstico por imagem , Artérias Carótidas/anormalidades , Artérias Carótidas/diagnóstico por imagem , Vermis Cerebelar/anormalidades , Vermis Cerebelar/diagnóstico por imagem , Cerebelo/anormalidades , Cerebelo/diagnóstico por imagem , Criança , Pré-Escolar , Estudos de Coortes , Hibridização Genômica Comparativa , Anormalidades Craniofaciais/diagnóstico por imagem , Feminino , Fibroblastos/metabolismo , Humanos , Imageamento Tridimensional , Lactente , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Mutação , Malformações do Sistema Nervoso/diagnóstico por imagem , Degradação do RNAm Mediada por Códon sem Sentido , Polimicrogiria/diagnóstico por imagem , Polimicrogiria/genética , RNA-Seq , Reação em Cadeia da Polimerase em Tempo Real , Síndrome , Tomografia Computadorizada por Raios X , Sequenciamento do Exoma , Sequenciamento Completo do Genoma
15.
Brain ; 142(10): 2948-2964, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31501903

RESUMO

Axon pathfinding and synapse formation are essential processes for nervous system development and function. The assembly of myelinated fibres and nodes of Ranvier is mediated by a number of cell adhesion molecules of the immunoglobulin superfamily including neurofascin, encoded by the NFASC gene, and its alternative isoforms Nfasc186 and Nfasc140 (located in the axonal membrane at the node of Ranvier) and Nfasc155 (a glial component of the paranodal axoglial junction). We identified 10 individuals from six unrelated families, exhibiting a neurodevelopmental disorder characterized with a spectrum of central (intellectual disability, developmental delay, motor impairment, speech difficulties) and peripheral (early onset demyelinating neuropathy) neurological involvement, who were found by exome or genome sequencing to carry one frameshift and four different homozygous non-synonymous variants in NFASC. Expression studies using immunostaining-based techniques identified absent expression of the Nfasc155 isoform as a consequence of the frameshift variant and a significant reduction of expression was also observed in association with two non-synonymous variants affecting the fibronectin type III domain. Cell aggregation studies revealed a severely impaired Nfasc155-CNTN1/CASPR1 complex interaction as a result of the identified variants. Immunofluorescence staining of myelinated fibres from two affected individuals showed a severe loss of myelinated fibres and abnormalities in the paranodal junction morphology. Our results establish that recessive variants affecting the Nfasc155 isoform can affect the formation of paranodal axoglial junctions at the nodes of Ranvier. The genetic disease caused by biallelic NFASC variants includes neurodevelopmental impairment and a spectrum of central and peripheral demyelination as part of its core clinical phenotype. Our findings support possible overlapping molecular mechanisms of paranodal damage at peripheral nerves in both the immune-mediated and the genetic disease, but the observation of prominent central neurological involvement in NFASC biallelic variant carriers highlights the importance of this gene in human brain development and function.


Assuntos
Moléculas de Adesão Celular/genética , Doenças Desmielinizantes/genética , Fatores de Crescimento Neural/genética , Transtornos do Neurodesenvolvimento/genética , Adolescente , Adulto , Alelos , Axônios/metabolismo , Moléculas de Adesão Celular/metabolismo , Criança , Pré-Escolar , Doenças Desmielinizantes/metabolismo , Feminino , Frequência do Gene/genética , Humanos , Lactente , Masculino , Mutação , Bainha de Mielina/genética , Bainha de Mielina/metabolismo , Fibras Nervosas Mielinizadas/fisiologia , Fatores de Crescimento Neural/metabolismo , Malformações do Sistema Nervoso , Transtornos do Neurodesenvolvimento/metabolismo , Neuroglia/metabolismo , Linhagem , Nervos Periféricos , Isoformas de Proteínas/metabolismo , Nós Neurofibrosos/genética , Nós Neurofibrosos/metabolismo
16.
Ann Neurol ; 83(6): 1089-1095, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29518281

RESUMO

VPS13 protein family members VPS13A through VPS13C have been associated with various recessive movement disorders. We describe the first disease association of rare recessive VPS13D variants including frameshift, missense, and partial duplication mutations with a novel complex, hyperkinetic neurological disorder. The clinical features include developmental delay, a childhood onset movement disorder (chorea, dystonia, or tremor), and progressive spastic ataxia or paraparesis. Characteristic brain magnetic resonance imaging shows basal ganglia or diffuse white matter T2 hyperintensities as seen in Leigh syndrome and choreoacanthocytosis. Muscle biopsy in 1 case showed mitochondrial aggregates and lipidosis, suggesting mitochondrial dysfunction. These findings underline the importance of the VPS13 complex in neurological diseases and a possible role in mitochondrial function. Ann Neurol 2018;83:1089-1095.


Assuntos
Deficiência Intelectual/genética , Transtornos dos Movimentos/genética , Espasticidade Muscular/genética , Mutação/genética , Atrofia Óptica/genética , Proteínas/genética , Ataxias Espinocerebelares/genética , Gânglios da Base/patologia , Encéfalo/patologia , Criança , Humanos , Doença de Leigh/patologia , Imageamento por Ressonância Magnética/métodos , Espasticidade Muscular/patologia , Linhagem
17.
J Med Genet ; 55(8): 561-566, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-28866611

RESUMO

BACKGROUND: The list of Mendelian disorders of the epigenetic machinery has expanded rapidly during the last 5 years. A few missense variants in the chromatin remodeler CHD1 have been found in several large-scale sequencing efforts focused on uncovering the genetic aetiology of autism. OBJECTIVES: To explore whether variants in CHD1 are associated with a human phenotype. METHODS: We used GeneMatcher to identify other physicians caring for patients with variants in CHD1. We also explored the epigenetic consequences of one of these variants in cultured fibroblasts. RESULTS: Here we describe six CHD1 heterozygous missense variants in a cohort of patients with autism, speech apraxia, developmental delay and facial dysmorphic features. Importantly, three of these variants occurred de novo. We also report on a subject with a de novo deletion covering a large fraction of the CHD1 gene without any obvious neurological phenotype. Finally, we demonstrate increased levels of the closed chromatin modification H3K27me3 in fibroblasts from a subject carrying a de novo variant in CHD1. CONCLUSIONS: Our results suggest that variants in CHD1 can lead to diverse phenotypic outcomes; however, the neurodevelopmental phenotype appears to be limited to patients with missense variants, which is compatible with a dominant negative mechanism of disease.


Assuntos
Montagem e Desmontagem da Cromatina/genética , DNA Helicases/genética , Proteínas de Ligação a DNA/genética , Deficiências do Desenvolvimento/genética , Estudos de Associação Genética , Predisposição Genética para Doença , Mutação de Sentido Incorreto , Criança , Pré-Escolar , DNA Helicases/química , Proteínas de Ligação a DNA/química , Deficiências do Desenvolvimento/diagnóstico , Fácies , Feminino , Fibroblastos/metabolismo , Estudos de Associação Genética/métodos , Histonas/metabolismo , Humanos , Lactente , Modelos Moleculares , Fenótipo , Conformação Proteica , Relação Estrutura-Atividade
18.
Ann Neurol ; 82(3): 466-478, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28856709

RESUMO

OBJECTIVE: Rett syndrome (RTT) and epileptic encephalopathy (EE) are devastating neurodevelopmental disorders with distinct diagnostic criteria. However, highly heterogeneous and overlapping clinical features often allocate patients into the boundary of the two conditions, complicating accurate diagnosis and appropriate medical interventions. Therefore, we investigated the specific molecular mechanism that allows an understanding of the pathogenesis and relationship of these two conditions. METHODS: We screened novel genetic factors from 34 RTT-like patients without MECP2 mutations, which account for ∼90% of RTT cases, by whole-exome sequencing. The biological function of the discovered variants was assessed in cell culture and Xenopus tropicalis models. RESULTS: We identified a recurring de novo variant in GABAB receptor R2 (GABBR2) that reduces the receptor function, whereas different GABBR2 variants in EE patients possess a more profound effect in reducing receptor activity and are more responsive to agonist rescue in an animal model. INTERPRETATION: GABBR2 is a genetic factor that determines RTT- or EE-like phenotype expression depending on the variant positions. GABBR2-mediated γ-aminobutyric acid signaling is a crucial factor in determining the severity and nature of neurodevelopmental phenotypes. Ann Neurol 2017;82:466-478.


Assuntos
Mutação , Receptores de GABA-B/genética , Síndrome de Rett/genética , Espasmos Infantis/genética , Exoma , Genótipo , Células HEK293 , Humanos , Proteína 2 de Ligação a Metil-CpG/genética , Fenótipo , Transdução de Sinais/genética
20.
Neurogenetics ; 17(3): 159-64, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27003583

RESUMO

Human immunodeficiency virus type I enhancer binding protein 2 (HIVEP2) has been previously associated with intellectual disability and developmental delay in three patients. Here, we describe six patients with developmental delay, intellectual disability, and dysmorphic features with de novo likely gene-damaging variants in HIVEP2 identified by whole-exome sequencing (WES). HIVEP2 encodes a large transcription factor that regulates various neurodevelopmental pathways. Our findings provide further evidence that pathogenic variants in HIVEP2 lead to intellectual disabilities and developmental delay.


Assuntos
Transtornos Dismórficos Corporais/genética , Proteínas de Ligação a DNA/genética , Deficiências do Desenvolvimento/genética , Deficiência Intelectual/genética , Fatores de Transcrição/genética , Adolescente , Transtornos Dismórficos Corporais/complicações , Criança , Pré-Escolar , Deficiências do Desenvolvimento/complicações , Feminino , Humanos , Deficiência Intelectual/complicações , Masculino , Mutação , Sequenciamento do Exoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA