Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 12(11)2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38001858

RESUMO

The intracellular redox-active labile iron pool (LIP) is weakly chelated and available for integration into the iron metalloproteins that are involved in diverse cellular processes, including cancer cell-specific metabolic oxidative stress. Abnormal iron metabolism and elevated LIP levels are linked to the poor survival of lung cancer patients, yet the underlying mechanisms remain unclear. Depletion of the LIP in non-small-cell lung cancer cell lines using the doxycycline-inducible overexpression of the ferritin heavy chain (Ft-H) (H1299 and H292), or treatment with deferoxamine (DFO) (H1299 and A549), inhibited cell growth and decreased clonogenic survival. The Ft-H overexpression-induced inhibition of H1299 and H292 cell growth was also accompanied by a significant delay in transit through the S-phase. In addition, both Ft-H overexpression and DFO in H1299 resulted in increased single- and double-strand DNA breaks, supporting the involvement of replication stress in the response to LIP depletion. The Ft-H and DFO treatment also sensitized H1299 to VE-821, an inhibitor of ataxia telangiectasis and Rad2-related (ATR) kinase, highlighting the potential of LIP depletion, combined with DNA damage response modifiers, to alter lung cancer cell responses. In contrast, only DFO treatment effectively reduced the LIP, clonogenic survival, cell growth, and sensitivity to VE-821 in A549 non-small-cell lung cancer cells. Importantly, the Ft-H and DFO sensitized both H1299 and A549 to chemoradiation in vitro, and Ft-H overexpression increased the efficacy of chemoradiation in vivo in H1299. These results support the hypothesis that the depletion of the LIP can induce genomic instability, cell death, and potentiate therapeutic responses to chemoradiation in NSCLC.

2.
Redox Biol ; 53: 102318, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35525024

RESUMO

PURPOSE: Platinum-based chemotherapy with or without immunotherapy is the mainstay of treatment for advanced stage non-small cell lung cancer (NSCLC) lacking a molecular driver alteration. Pre-clinical studies have reported that pharmacological ascorbate (P-AscH-) enhances NSCLC response to platinum-based therapy. We conducted a phase II clinical trial combining P-AscH- with carboplatin-paclitaxel chemotherapy. EXPERIMENTAL DESIGN: Chemotherapy naïve advanced stage NSCLC patients received 75 g ascorbate twice per week intravenously with carboplatin and paclitaxel every three weeks for four cycles. The primary endpoint was to improve tumor response per Response Evaluation Criteria in Solid Tumors (RECIST) v1.1 compared to the historical control of 20%. The trial was conducted as an optimal Simon's two-stage design. Blood samples were collected for exploratory analyses. RESULTS: The study enrolled 38 patients and met its primary endpoint with an objective response rate of 34.2% (p = 0.03). All were confirmed partial responses (cPR). The disease control rate was 84.2% (stable disease + cPR). Median progression-free and overall survival were 5.7 months and 12.8 months, respectively. Treatment-related adverse events (TRAE) included one grade 5 (neutropenic fever) and five grade 4 events (cytopenias). Cytokine and chemokine data suggest that the combination elicits an immune response. Immunophenotyping of peripheral blood mononuclear cells demonstrated an increase in effector CD8 T-cells in patients with a progression-free survival (PFS) ≥ 6 months. CONCLUSIONS: The addition of P-AscH- to platinum-based chemotherapy improved tumor response in advanced stage NSCLC. P-AscH- appears to alter the host immune response and needs further investigation as a potential adjuvant to immunotherapy.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Carboplatina/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Humanos , Leucócitos Mononucleares/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Paclitaxel/uso terapêutico , Platina/uso terapêutico
3.
JCI Insight ; 5(9)2020 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-32376801

RESUMO

Therapeutic complement inhibition is a major focus for novel drug development. Of upstream targets, factor D (FD) is appealing because it circulates in plasma at low concentrations and has a single function: to cleave factor B to generate C3 convertase of the alternative pathway (AP). Mice with a targeted deletion of factor H (FH; Cfh-/- mice) develop C3 glomerulopathy (C3G) due to uncontrolled AP activity. To assess the impact of FD inhibition, we studied Cfh-/- Cfd-/- mice. We show that C3G in Cfh-/- mice is not rescued by removing FD. We used serum from Cfh-/- Cfd-/- mice to demonstrate that residual AP function occurs even when both FD and FH are missing and that hemolytic activity is present due to the action of C3(H2O). We propose that uncontrolled tick-over leads to slow activation of the AP in Cfh-/- Cfd-/- mice and that a minimal threshold of FH is necessary if tissue deposition of C3 is to be prevented. The FD/FH ratio dictates serum C3 level and renal C3b deposition. In C3G patients with chronic renal disease, the FD/FH ratio correlates inversely with C3 and C5 serum levels, suggesting that continuous AP control may be difficult to achieve by targeting FD.


Assuntos
Complemento C3/imunologia , Fator H do Complemento/imunologia , Via Alternativa do Complemento , Doenças da Deficiência Hereditária de Complemento/imunologia , Nefropatias/imunologia , Animais , Complemento C5/imunologia , Fator D do Complemento/imunologia , Humanos , Rim/imunologia , Rim/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA