Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 466
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Genome Res ; 32(2): 297-308, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34949669

RESUMO

Polyploidy is widespread in plants, allowing the different copies of genes to be expressed differently in a tissue-specific or developmentally specific way. This allele-specific expression (ASE) has been widely reported, but the proportion and nature of genes showing this characteristic have not been well defined. We now report an analysis of the frequency and patterns of ASE at the whole-genome level in the highly polyploid sugarcane genome. Very high depth whole-genome sequencing and RNA sequencing revealed strong correlations between allelic proportions in the genome and in expressed sequences. This level of sequencing allowed discrimination of each of the possible allele doses in this 12-ploid genome. Most genes were expressed in direct proportion to the frequency of the allele in the genome with examples of polymorphisms being found with every possible discrete level of dose from 1:11 for single-copy alleles to 12:0 for monomorphic sites. The rarer cases of ASE were more frequent in the expression of defense-response genes, as well as in some processes related to the biosynthesis of cell walls. ASE was more common in genes with variants that resulted in significant disruption of function. The low level of ASE may reflect the recent origin of polyploid hybrid sugarcane. Much of the ASE present can be attributed to strong selection for resistance to diseases in both nature and domestication.


Assuntos
Saccharum , Alelos , Expressão Gênica , Polimorfismo de Nucleotídeo Único , Poliploidia , Saccharum/genética , Análise de Sequência de RNA
2.
BMC Plant Biol ; 24(1): 260, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38594608

RESUMO

BACKGROUND: The finger lime (Citrus australasica), one of six Australian endemic citrus species shows a high natural phenotypic diversity and novel characteristics. The wide variation and unique horticultural features have made this lime an attractive candidate for domestication. Currently no haplotype resolved genome is available for this species. Here we present a high quality, haplotype-resolved reference genome for this species using PacBio HiFi and Hi-C sequencing. RESULTS: Hifiasm assembly and SALSA scaffolding resulted in a collapsed genome size of 344.2 Mb and 321.1 Mb and 323.2 Mb size for the two haplotypes. The nine pseudochromosomes of the collapsed genome had an N50 of 35.2 Mb, 99.1% genome assembly completeness and 98.9% gene annotation completeness (BUSCO). A total of 41,304 genes were predicted in the nuclear genome. Comparison with C. australis revealed that 13,661 genes in pseudochromosomes were unique in C. australasica. These were mainly involved in plant-pathogen interactions, stress response, cellular metabolic and developmental processes, and signal transduction. The two genomes showed a syntenic arrangement at the chromosome level with large structural rearrangements in some chromosomes. Genetic variation among five C. australasica cultivars was analysed. Genes related to defense, synthesis of volatile compounds and red/yellow coloration were identified in the genome. A major expansion of genes encoding thylakoid curvature proteins was found in the C. australasica genome. CONCLUSIONS: The genome of C. australasica present in this study is of high quality and contiguity. This genome helps deepen our understanding of citrus evolution and reveals disease resistance and quality related genes with potential to accelerate the genetic improvement of citrus.


Assuntos
Compostos de Cálcio , Citrus , Citrus/genética , Resistência à Doença/genética , Austrália , Óxidos , Filogenia
3.
BMC Plant Biol ; 24(1): 331, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664619

RESUMO

BACKGROUND: Jasmine (Jasminum), renowned for its ornamental value and captivating fragrance, has given rise to numerous species and accessions. However, limited knowledge exists regarding the evolutionary relationships among various Jasminum species. RESULTS: In the present study, we sequenced seven distinct Jasminum species, resulting in the assembly of twelve high-quality complete chloroplast (cp) genomes. Our findings revealed that the size of the 12 cp genomes ranged from 159 to 165 kb and encoded 134-135 genes, including 86-88 protein-coding genes, 38-40 tRNA genes, and 8 rRNA genes. J. nudiflorum exhibited a larger genome size compared to other species, mainly attributed to the elevated number of forward repeats (FRs). Despite the typically conservative nature of chloroplasts, variations in the presence or absence of accD have been observed within J. sambac. The calculation of nucleotide diversity (Pi) values for 19 cp genomes indicated that potential mutation hotspots were more likely to be located in LSC regions than in other regions, particularly in genes ycf2, rbcL, atpE, ndhK, and ndhC (Pi > 0.2). Ka/Ks values revealed strong selection pressure on the genes rps2, atpA, rpoA, rpoC1, and rpl33 when comparing J. sambac with the three most closely related species (J. auriculatum, J. multiflorum, and J. dichotomum). Additionally, SNP identification, along with the results of Structure, PCA, and phylogenetic tree analyses, divided the Jasminum cp genomes into six groups. Notably, J. polyanthum showed gene flow signals from both the G5 group (J. nudiflorum) and the G3 group (J. tortuosum and J. fluminense). Phylogenetic tree analysis reflected that most species from the same genus clustered together with robust support in Oleaceae, strongly supporting the monophyletic nature of cp genomes within the genus Jasminum. CONCLUSION: Overall, this study provides comprehensive insights into the genomic composition, variation, and phylogenetic relationships among various Jasminum species. These findings enhance our understanding of the genetic diversity and evolutionary history of Jasminum.


Assuntos
Evolução Molecular , Variação Genética , Genoma de Cloroplastos , Jasminum , Filogenia , Jasminum/genética , Oleaceae/genética
4.
J Med Internet Res ; 26: e54282, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38551617

RESUMO

BACKGROUND: Although adolescents report high levels of stress, they report engaging in few stress management techniques. Consequently, developing effective and targeted programs to help address this transdiagnostic risk factor in adolescence is particularly important. Most stress management programs for adolescents are delivered within schools, and the evidence for these programs is mixed, suggesting a need for alternative options for stress management among adolescents. OBJECTIVE: The aim of the study is to test the short-term effects of a self-guided digital mental health intervention (DMHI) designed for adolescents on perceived stress and rumination (ie, brooding). METHODS: This was a 12-week, 2-arm decentralized randomized controlled trial of adolescents aged 13 to 17 years who presented with elevated levels of perceived stress and brooding. Participants were randomly assigned to engage with a self-guided DMHI (Happify for Teens) or to a waitlist control. Participants assigned to the intervention group were given access to the program for 12 weeks. Happify for Teens consists of various evidence-based activities drawn from therapeutic modalities such as cognitive behavioral therapy, positive psychology, and mindfulness, which are then organized into several programs targeting specific areas of concern (eg, Stress Buster 101). Participants in the waitlist control received access to this product for 12 weeks upon completing the study. Participants in both groups completed measures of perceived stress, brooding, optimism, sleep disturbance, and loneliness at baseline, 4 weeks, 8 weeks, and 12 weeks. Changes in outcomes between the intervention and waitlist control groups were assessed using repeated-measures multilevel models. RESULTS: Of the 303 participants included in data analyses, 132 were assigned to the intervention and 171 to the waitlist. There were significantly greater improvements in the intervention condition for perceived stress (intervention: B=-1.50; 95% CI -1.82 to -1.19; P<.001 and control: B=-0.09; 95% CI -0.44 to 0.26; P=.61), brooding (intervention: B=-0.84; 95% CI -1.00 to -0.68; P<.001 and control: B=-0.30; 95% CI -0.47 to -0.12; P=.001), and loneliness (intervention: B=-0.96; 95% CI -1.2 to -0.73; P<.001 and control: B=-0.38; 95% CI: -0.64 to -0.12; P=.005) over the 12-week study period. Changes in optimism and sleep disturbance were not significantly different across groups (Ps≥.096). CONCLUSIONS: Happify for Teens was effective at reducing perceived stress, rumination, and loneliness among adolescents over 12 weeks when compared to a waitlist control group. Our data reveal the potential benefits of DMHIs for adolescents, which may present a more scalable, destigmatized, and cost-effective alternative to school-based programs. TRIAL REGISTRATION: ClinicalTrials.gov NCT04567888; https://clinicaltrials.gov/ct2/show/NCT04567888. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): RR2-10.2196/25545.


Assuntos
Terapia Cognitivo-Comportamental , Transtornos do Sono-Vigília , Adolescente , Humanos , Saúde Mental , Análise de Dados , Saúde Digital , Estresse Psicológico/terapia
5.
Plant J ; 109(3): 727-736, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34784084

RESUMO

Recent advances in the sequencing and assembly of plant genomes have allowed the generation of genomes with increasing contiguity and sequence accuracy. Chromosome level genome assemblies using sequence contigs generated from long read sequencing have involved the use of proximity analysis (Hi-C) or traditional genetic maps to guide the placement of sequence contigs within chromosomes. The development of highly accurate long reads by repeated sequencing of circularized DNA (HiFi; PacBio) has greatly increased the size of contigs. We now report the use of HiFiasm to assemble the genome of Macadamia jansenii, a genome that has been used as a model to test sequencing and assembly. This achieved almost complete chromosome level assembly from the sequence data alone without the need for higher level chromosome map information. Eight of the 14 chromosomes were represented by a single large contig (six with telomere repeats at both ends) and the other six assembled from two to four main contigs. The small number of chromosome breaks appears to be the result of highly repetitive regions including ribosomal genes that cannot be assembled by these approaches. De novo assembly of near complete chromosome level plant genomes now appears possible using these sequencing and assembly tools. Further targeted strategies might allow these remaining gaps to be closed.


Assuntos
Cromossomos de Plantas , Genoma de Planta , Macadamia/genética , Sequenciamento de Nucleotídeos em Larga Escala , Análise de Sequência de DNA
6.
BMC Genomics ; 24(1): 18, 2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36639618

RESUMO

BACKGROUND: The importance of uridine 5'-diphosphate glucose (UDP-G) synthesis and degradation on carbon (C) partitioning has been indicated in several studies of plant systems, whereby the kinetic properties and abundance of involved enzymes had a significant effect upon the volume of C moving into the hemicellulose, cellulose and sucrose pools. In this study, the expression of 136 genes belonging to 32 gene families related to UDP-G metabolism was studied in 3 major sugarcane organs (including leaf, internode and root) at 6 different developmental stages in 2 commercial genotypes. RESULTS: Analysis of the genes associated with UDP-G metabolism in leaves indicated low expression of sucrose synthase, but relatively high expression of invertase genes, specifically cell-wall invertase 4 and neutral acid invertase 1-1 and 3 genes. Further, organs that are primarily responsible for sucrose synthesis or bioaccumulation, i.e., in source organs (mature leaves) and storage sink organs (mature internodes), had very low expression of sucrose, cellulose and hemicellulose synthesis genes, specifically sucrose synthase 1 and 2, UDP-G dehydrogenase 5 and several cellulose synthase subunit genes. Gene expression was mostly very low in both leaf and mature internode samples; however, leaves did have a comparatively heightened invertase and sucrose phosphate synthase expression. Major differences were observed in the transcription of several genes between immature sink organs (roots and immature internodes). Gene transcription favoured utilisation of UDP-G toward insoluble and respiratory pools in roots. Whereas, there was comparatively higher expression of sucrose synthetic genes, sucrose phosphate synthase 1 and 4, and comparatively lower expression of many genes associated with C flow to insoluble and respiratory pools including myo-Inositol oxygenase, UDP-G dehydrogenase 4, vacuolar invertase 1, and several cell-wall invertases in immature internodes. CONCLUSION: This study represents the first effort to quantify the expression of gene families associated with UDP-G metabolism in sugarcane. Transcriptional analysis displayed the likelihood that C partitioning in sugarcane is closely related to the transcription of genes associated with the UDP-G metabolism. The data presented may provide an accurate genetic reference for future efforts in altering UDP-G metabolism and in turn C partitioning in sugarcane.


Assuntos
Saccharum , Saccharum/metabolismo , beta-Frutofuranosidase/genética , beta-Frutofuranosidase/metabolismo , Difosfato de Uridina/metabolismo , Sacarose/metabolismo , Celulose/metabolismo , Glucose/metabolismo , Oxirredutases/metabolismo
7.
BMC Plant Biol ; 23(1): 440, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37726703

RESUMO

BACKGROUND: Dioecious plants have male and female flowers on separate plants. Jojoba is a dioecious plant that is drought-tolerant and native to arid areas. The genome sequence of male and female plants was recently reported and revealed an X and Y chromosome system, with two large male-specific insertions in the Y chromosome. RESULTS: A total of 16,923 differentially expressed genes (DEG) were identified between the flowers of the male and female jojoba plants. This represented 40% of the annotated genes in the genome. Many genes, including those responsible for plant environmental responses and those encoding transcription factors (TFs), were specific to male or female reproductive organs. Genes involved in plant hormone metabolism were also found to be associated with flower and pollen development. A total of 8938 up-regulated and 7985 down-regulated genes were identified in comparison between male and female flowers, including many novel genes specific to the jojoba plant. The most differentially expressed genes were associated with reproductive organ development. The highest number of DEG were linked with the Y chromosome in male plants. The male specific parts of the Y chromosome encoded 12 very highly expressed genes including 9 novel genes and 3 known genes associated with TFs and a plant hormone which may play an important role in flower development. CONCLUSION: Many genes, largely with unknown functions, may explain the sexual dimorphisms in jojoba plants and the differentiation of male and female flowers.


Assuntos
Caryophyllales , Reguladores de Crescimento de Plantas , Animais , Secas , Flores/genética , Expressão Gênica
8.
Mol Genet Genomics ; 298(6): 1395-1405, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37679604

RESUMO

Recently, a novel purple-pericarp super-sweetcorn line, 'Tim1' (A1A1.sh2sh2) was derived from the purple-pericarp maize 'Costa Rica' (A1Sh2.A1Sh2) and white shrunken2 (sh2) super-sweetcorn 'Tims-white' (a1sh2.a1sh2), however, information regarding anthocyanin biosynthesis genes controlling purple colour and sweetness gene is lacking. Specific sequence differences in the CDS (coding DNA sequence) and promoter regions of the anthocyanin biosynthesis structural genes, anthocyanin1 (A1), purple aleurone1 (Pr1) and regulatory genes, purple plant1 (Pl1), plant colour1 (B1), coloured1 (R1), and the sweetcorn structural gene, shrunken2 (sh2) were investigated using the publicly available annotated yellow starchy maize, B73 (NAM5.0) as a reference genome. In the CDS region, the A1, Pl1 and R1 gene sequence differences of 'Tim1' and 'Costa Rica' were similar, as they control purple-pericarp pigmentation. However, the B1 gene showed similarity between the 'Tim1' and 'Tims-white' lines, which may indicate that it does not have a role in controlling pericarp colour, unlike the report of a previous study. In the case of the Pr1 gene, in contrast to 'Costa Rica', 6- and 8-bp dinucleotide (TA) repeats were observed in the promoter region of the 'Tims-white' and 'Tim1' lines, respectively, indicating the defective functionality (redder colour in 'Tim1' rather than purple in 'Costa Rica') of the recessive pr1 allele. In sweetcorn, the structural gene (sh2), sequence showed similarity between purple-sweet 'Tim1' and its white-sweet parent 'Tims-white', as both display a shrunken phenotype in their mature kernels. These findings revealed that the developed purple-sweet line is different to the reference yellow-nonsweet line in both the anthocyanin biosynthesis and sweetcorn genes.


Assuntos
Antocianinas , Zea mays , Antocianinas/genética , Zea mays/genética , Zea mays/metabolismo , Fenótipo , Pigmentação/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
9.
Crit Rev Biotechnol ; 43(5): 716-733, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35723584

RESUMO

Rice is one of the most essential crops since it meets the calorific needs of 3 billion people around the world. Rice seed development initiates upon fertilization, leading to the establishment of two distinct filial tissues, the endosperm and embryo, which accumulate distinct seed storage products, such as starch, storage proteins, and lipids. A range of systems biology tools deployed in dissecting the spatiotemporal dynamics of transcriptome data, methylation, and small RNA based regulation operative during seed development, influencing the accumulation of storage products was reviewed. Studies of other model systems are also considered due to the limited information on the rice transcriptome. This review highlights key genes identified through a holistic view of systems biology targeted to modify biochemical composition and influence rice grain quality and nutritional value with the target of improving rice as a functional food.


Assuntos
Oryza , Humanos , Sementes , Grão Comestível , Endosperma/genética , Endosperma/metabolismo , Biologia , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo
10.
Diabetes Obes Metab ; 25(7): 1985-1994, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36999233

RESUMO

AIM: To determine the effects of astaxanthin treatment on lipids, cardiovascular disease (CVD) markers, glucose tolerance, insulin action and inflammation in individuals with prediabetes and dyslipidaemia. MATERIALS AND METHODS: Adult participants with dyslipidaemia and prediabetes (n = 34) underwent baseline blood draw, an oral glucose tolerance test and a one-step hyperinsulinaemic-euglycaemic clamp. They were then randomized (n = 22 treated, 12 placebo) to receive astaxanthin 12 mg daily or placebo for 24 weeks. Baseline studies were repeated after 12 and 24 weeks of therapy. RESULTS: After 24 weeks, astaxanthin treatment significantly decreased low-density lipoprotein (-0.33 ± 0.11 mM) and total cholesterol (-0.30 ± 0.14 mM) (both P < .05). Astaxanthin also reduced levels of the CVD risk markers fibrinogen (-473 ± 210 ng/mL), L-selectin (-0.08 ± 0.03 ng/mL) and fetuin-A (-10.3 ± 3.6 ng/mL) (all P < .05). While the effects of astaxanthin treatment did not reach statistical significance, there were trends toward improvements in the primary outcome measure, insulin-stimulated, whole-body glucose disposal (+0.52 ± 0.37 mg/m2 /min, P = .078), as well as fasting [insulin] (-5.6 ± 8.4 pM, P = .097) and HOMA2-IR (-0.31 ± 0.16, P = .060), suggesting improved insulin action. No consistent significant differences from baseline were observed for any of these outcomes in the placebo group. Astaxanthin was safe and well tolerated with no clinically significant adverse events. CONCLUSIONS: Although the primary endpoint did not meet the prespecified significance level, these data suggest that astaxanthin is a safe over-the-counter supplement that improves lipid profiles and markers of CVD risk in individuals with prediabetes and dyslipidaemia.


Assuntos
Doenças Cardiovasculares , Dislipidemias , Estado Pré-Diabético , Adulto , Humanos , Estado Pré-Diabético/complicações , Estado Pré-Diabético/tratamento farmacológico , Antioxidantes/uso terapêutico , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/prevenção & controle , Glicemia , Fatores de Risco , Insulina/uso terapêutico , Glucose/uso terapêutico , Colesterol , Fatores de Risco de Doenças Cardíacas , Dislipidemias/tratamento farmacológico
11.
Plant J ; 108(5): 1283-1294, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34570389

RESUMO

Most flowering plants are hermaphrodites, but around 6% of species are dioecious, having separate male and female plants. Sex chromosomes and some sex-specific genes have been reported in plants, but the genome sequences have not been compared. We now report the genome sequence of male and female jojoba (Simmondsia chinensis) plants, revealing a very large difference in the sex chromosomes. The male genome assembly was 832 Mb and the female 822 Mb. This was explained by the large size differences in the Y chromosome (37.6 Mb) compared with the X chromosome (26.9 Mb). Relative to the X chromosome, the Y chromosome had two large insertions each of more than 5 Mb containing more than 400 genes. Many of the genes in the chromosome-specific regions were novel. These male-specific regions included many flowering-related and stress response genes. Smaller insertions found only in the X chromosome totalled 877 kb. The wide divergence of the sex chromosomes suggests a long period of adaptation to diverging sex-specific roles. Male and female plants may have evolved to accommodate factors such as differing reproductive resource allocation requirements under the stress of the desert environment in which the plants are found. The sex-determining regions accumulate genes beneficial to each sex. This has required the evolution of many more novel sex-specific genes than has been reported for other organisms. This suggest that dioecious plants provide a novel source of genes for manipulation of reproductive performance and environmental adaptation in crops.


Assuntos
Caryophyllales/genética , Cromossomos de Plantas/genética , Genoma de Planta/genética , Evolução Molecular , Anotação de Sequência Molecular , Caracteres Sexuais
12.
Planta ; 255(2): 51, 2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35084593

RESUMO

MAIN CONCLUSION: Australian native species of sorghum contain negligible amounts of dhurrin in their leaves and the cyanogenesis process is regulated differently under water-stress in comparison to domesticated sorghum species. Cyanogenesis in forage sorghum is a major concern in agriculture as the leaves of domesticated sorghum are potentially toxic to livestock, especially at times of drought which induces increased production of the cyanogenic glucoside dhurrin. The wild sorghum species endemic to Australia have a negligible content of dhurrin in the above ground tissues and thus represent a potential resource for key agricultural traits like low toxicity. In this study we investigated the differential expression of cyanogenesis related genes in the leaf tissue of the domesticated species Sorghum bicolor and the Australian native wild species Sorghum macrospermum grown in glasshouse-controlled water-stress conditions using RNA-Seq analysis to analyse gene expression. The study identified genes, including those in the cyanogenesis pathway, that were differentially regulated in response to water-stress in domesticated and wild sorghum. In the domesticated sorghum, dhurrin content was significantly higher compared to that in the wild sorghum and increased with stress and decreased with age whereas in wild sorghum the dhurrin content remained negligible. The key genes in dhurrin biosynthesis, CYP79A1, CYP71E1 and UGT85B1, were shown to be highly expressed in S. bicolor. DHR and HNL encoding the dhurrinase and α-hydroxynitrilase catalysing bio-activation of dhurrin were also highly expressed in S. bicolor. Analysis of the differences in expression of cyanogenesis related genes between domesticated and wild sorghum species may allow the use of these genetic resources to produce more acyanogenic varieties in the future.


Assuntos
Sorghum , Austrália , Grão Comestível , Nitrilas , Sorghum/genética , Água
13.
Mol Ecol ; 31(8): 2207-2222, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35170117

RESUMO

The last decade has witnessed huge technological advances in genomics, particularly in DNA sequencing. Here, we review the actual and potential application of genomics in supporting in situ conservation of crop wild relatives (CWRs). In addition to helping in prioritization of protection of CWR taxa and in situ conservation sites, genome analysis is allowing the identification of novel alleles that need to be prioritized for conservation. Genomics is enabling the identification of potential sources of important adaptive traits that can guide the establishment or enrichment of in situ genetic reserves. Genomic tools also have the potential for developing a robust framework for monitoring and reporting genome-based indicators of genetic diversity changes associated with factors such as land use or climate change. These tools have been demonstrated to have an important role in managing the conservation of populations, supporting sustainable access and utilization of CWR diversity, enhancing accelerated domestication of new crops and forensic genomics thus preventing misappropriation of genetic resources. Despite this great potential, many policy makers and conservation managers have failed to recognize and appreciate the need to accelerate the application of genomics to support the conservation and management of biodiversity in CWRs to underpin global food security. Funding and inadequate genomic expertise among conservation practitioners also remain major hindrances to the widespread application of genomics in conservation.


Assuntos
Produtos Agrícolas , Genômica , Biodiversidade , Mudança Climática , Produtos Agrícolas/genética , Variação Genética
14.
Photosynth Res ; 153(3): 125-134, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35648247

RESUMO

Carbon concentrating mechanisms (CCMs) in plants are abaptive features that have evolved to sustain plant growth in unfavorable environments, especially at low atmospheric carbon levels and high temperatures. Uptake of CO2 and its storage in the aerenchyma tissues of Lycopsids and diurnal acidity fluctuation in aquatic plants during the Palaeozoic era (ca. 300 Ma.) would represent the earliest evolution of a CCM. The CCM parts of the dark reactions of photosynthesis have evolved many times, while the light reactions are conserved across plant lineages. A C4 type CCM, leaf C4 photosynthesis is evolved in the PACMAD clade of the Poaceae family. The evolution of C4 photosynthesis from C3 photosynthesis was an abaptation. Photosynthesis in reproductive tissues of sorghum and maize (PACMAD clade) has been shown to be of a weaker C4 type (high CO2 compensation point, low carbon isotope discrimination, and lack of Rubisco compartmentalization, when compared to the normal C4 types) than that in the leaves (normal C4 type). However, this does not fit well with the character polarity concept from an evolutionary perspective. In a recent model proposed for CCM evolution, the development of a rudimentary CCM prior to the evolution of a more efficient CCM (features contrasting to a weaker C4 type, leading to greater biomass production rate) has been suggested. An intermediate crassulacean acid metabolism (CAM) type of CCM (rudimentary) was reported in the genera, Brassia, Coryanthes, Eriopsis, Peristeria, of the orchids (well-known group of plants that display the CAM pathway). Similarly, we propose here the evolution of a rudimentary CCM (C4-like type pathway) in the non-foliar tissues of the Poaceae, prior to the evolution of the C4 pathway as identified in the leaves of the C4 species of the PACMAD clade.


Assuntos
Poaceae , Ribulose-Bifosfato Carboxilase , Carbono/metabolismo , Dióxido de Carbono/metabolismo , Isótopos de Carbono/metabolismo , Fotossíntese , Folhas de Planta/metabolismo , Plantas/metabolismo , Poaceae/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismo
15.
Theor Appl Genet ; 135(5): 1619-1636, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35224663

RESUMO

Sugarcane, with its exceptional carbon dioxide assimilation, biomass and sugar yield, has a high potential for the production of bio-energy, bio-plastics and high-value products in the food and pharmaceutical industries. A crucial challenge for long-term economic viability and environmental sustainability is also to optimize the production of biomass composition and carbon sequestration. Sugarcane varieties such as KQ228 and Q253 are highly utilized in the industry. These varieties are characterized by a high early-season sugar content associated with high yield. In order to investigate these correlations, 1,440 internodes were collected and combined to generate a set of 120 samples in triplicate across 24 sugarcane cultivars at five different development stages. Weighted gene co-expression network analysis (WGCNA) was used and revealed for the first time two sets of co-expressed genes with a distinct and opposite correlation between fibre and sugar content. Gene identification and metabolism pathways analysis was used to define these two sets of genes. Correlation analysis identified a large number of interconnected metabolic pathways linked to sugar content and fibre content. Unsupervised hierarchical clustering of gene expression revealed a stronger level of segregation associated with the genotypes than the stage of development, suggesting a dominant genetic influence on biomass composition and facilitating breeding selection. Characterization of these two groups of co-expressed key genes can help to improve breeding program for high fibre, high sugar species or plant synthetic biology.


Assuntos
Saccharum , Grão Comestível/genética , Regulação da Expressão Gênica de Plantas , Melhoramento Vegetal , Estações do Ano , Sacarose/metabolismo , Açúcares , Transcriptoma
16.
Mol Cell ; 56(3): 425-435, 2014 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-25458843

RESUMO

Pyruvate lies at a central biochemical node connecting carbohydrate, amino acid, and fatty acid metabolism, and the regulation of pyruvate flux into mitochondria represents a critical step in intermediary metabolism impacting numerous diseases. To characterize changes in mitochondrial substrate utilization in the context of compromised mitochondrial pyruvate transport, we applied (13)C metabolic flux analysis (MFA) to cells after transcriptional or pharmacological inhibition of the mitochondrial pyruvate carrier (MPC). Despite profound suppression of both glucose and pyruvate oxidation, cell growth, oxygen consumption, and tricarboxylic acid (TCA) metabolism were surprisingly maintained. Oxidative TCA flux was achieved through enhanced reliance on glutaminolysis through malic enzyme and pyruvate dehydrogenase (PDH) as well as fatty acid and branched-chain amino acid oxidation. Thus, in contrast to inhibition of complex I or PDH, suppression of pyruvate transport induces a form of metabolic flexibility associated with the use of lipids and amino acids as catabolic and anabolic fuels.


Assuntos
Pró-Proteína Convertase 1/metabolismo , Pró-Proteína Convertase 2/metabolismo , Ácido Pirúvico/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células , Ciclo do Ácido Cítrico , Ácidos Graxos/metabolismo , Glutamina/metabolismo , Humanos , Lipogênese , Análise do Fluxo Metabólico , Camundongos , Fibras Musculares Esqueléticas/metabolismo , Oxirredução
17.
Child Dev ; 93(4): 1090-1105, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35404480

RESUMO

This study tested whether newborn attention and arousal provide a foundation for the dynamics of respiratory sinus arrhythmia (RSA) in mother-infant dyads. Participants were 106 mothers (Mage  = 29.54) and their 7-month-old infants (55 males and 58 White and non-Hispanic). Newborn attention and arousal were measured shortly after birth using the NICU Network Neurobehavioral Scale. Higher newborn arousal predicted a slower return of infant RSA to baseline. Additionally, greater newborn attention predicted mothers' slower return to baseline RSA following the still-face paradigm, and this effect only held for mothers whose infants had lower newborn arousal. These findings suggest that newborn neurobehavior, measured within days of birth, may contribute to later mother-infant physiological processes while recovering from stress.


Assuntos
Mães , Arritmia Sinusal Respiratória , Adulto , Nível de Alerta/fisiologia , Arritmia Sinusal , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Relações Mãe-Filho , Arritmia Sinusal Respiratória/fisiologia
18.
Int J Mol Sci ; 23(21)2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36362135

RESUMO

The composition and nutritional properties of rice are the product of the expression of genes in the developing seed. RNA-Seq was used to investigate the level of gene expression at different stages of seed development in domesticated rice (Oryza sativa ssp. japonica var. Nipponbare) and two Australian wild taxa from the primary gene pool of rice (Oryza meridionalis and Oryza rufipogon type taxa). Transcriptome profiling of all coding sequences in the genome revealed that genes were significantly differentially expressed at different stages of seed development in both wild and domesticated rice. Differentially expressed genes were associated with metabolism, transcriptional regulation, nucleic acid processing, and signal transduction with the highest number of being linked to protein synthesis and starch/sucrose metabolism. The level of gene expression associated with domestication traits, starch and sucrose metabolism, and seed storage proteins were highest at the early stage (5 days post anthesis (DPA)) to the middle stage (15 DPA) and declined late in seed development in both wild and domesticated rice. However, in contrast, black hull colour (Bh4) gene was significantly expressed throughout seed development. A substantial number of novel transcripts (38) corresponding to domestication genes, starch and sucrose metabolism, and seed storage proteins were identified. The patterns of gene expression revealed in this study define the timing of metabolic processes associated with seed development and may be used to explain differences in rice grain quality and nutritional value.


Assuntos
Oryza , Austrália , Sementes/genética , Perfilação da Expressão Gênica , Amido/genética , Proteínas de Armazenamento de Sementes/genética , Sacarose , Expressão Gênica , Regulação da Expressão Gênica de Plantas
19.
BMC Genomics ; 22(1): 370, 2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-34016055

RESUMO

BACKGROUND: Improving yield prediction and selection efficiency is critical for tree breeding. This is vital for macadamia trees with the time from crossing to production of new cultivars being almost a quarter of a century. Genomic selection (GS) is a useful tool in plant breeding, particularly with perennial trees, contributing to an increased rate of genetic gain and reducing the length of the breeding cycle. We investigated the potential of using GS methods to increase genetic gain and accelerate selection efficiency in the Australian macadamia breeding program with comparison to traditional breeding methods. This study evaluated the prediction accuracy of GS in a macadamia breeding population of 295 full-sib progeny from 32 families (29 parents, reciprocals combined), along with a subset of parents. Historical yield data for tree ages 5 to 8 years were used in the study, along with a set of 4113 SNP markers. The traits of focus were average nut yield from tree ages 5 to 8 years and yield stability, measured as the standard deviation of yield over these 4 years. GBLUP GS models were used to obtain genomic estimated breeding values for each genotype, with a five-fold cross-validation method and two techniques: prediction across related populations and prediction across unrelated populations. RESULTS: Narrow-sense heritability of yield and yield stability was low (h2 = 0.30 and 0.04, respectively). Prediction accuracy for yield was 0.57 for predictions across related populations and 0.14 when predicted across unrelated populations. Accuracy of prediction of yield stability was high (r = 0.79) for predictions across related populations. Predicted genetic gain of yield using GS in related populations was 474 g/year, more than double that of traditional breeding methods (226 g/year), due to the halving of generation length from 8 to 4 years. CONCLUSIONS: The results of this study indicate that the incorporation of GS for yield into the Australian macadamia breeding program may accelerate genetic gain due to reduction in generation length, though the cost of genotyping appears to be a constraint at present.


Assuntos
Macadamia , Nozes , Austrália , Criança , Pré-Escolar , Genômica , Genótipo , Humanos , Macadamia/genética , Modelos Genéticos , Fenótipo , Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único , Seleção Genética
20.
Mol Biol Rep ; 48(1): 601-610, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33411234

RESUMO

Angiogenesis is a multistep process requiring endothelial cell activation, migration, proliferation and tube formation. We recently reported that elevated secretion of interlukin 8 (IL8) by myotubes (MT) from subjects with Type-2 Diabetes (T2D) reduced angiogenesis by human umbilical vein endothelial cells (HUVEC) and human skeletal muscle explants. This lower vascularization was mediated through impaired activation of the phosphatidylinositol 3-kinase (PI3K)-pathway. We sought to investigate additional signaling elements that might mediate reduced angiogenesis. HUVEC were exposed to levels of IL8 equal to those secreted by MT from non-diabetic (ND) and T2D subjects and the involvement of components in the angiogenic response pathway examined. Cellular content of reactive oxygen species and Nitrate secretion were similar after treatment with [ND-IL8] and [T2D-IL8]. CXCR1 protein was down-regulated after treatment with [T2D-IL8] (p < 0.01 vs [ND-IL8] treatment); CXCR2 expression was unaltered. Addition of neutralizing antibodies against CXCR1 and CXCR2 to HUVEC treated with IL8 confirmed that CXCR1 alone mediated the angiogenic response to IL8. A key modulator of angiogenesis is matrix metalloproteinase-2 (MMP2). MMP2 secretion was higher after treatment with [ND-IL8] vs [T2D-IL8] (p < 0.01). MMP2 inhibition reduced tube formation to greater extent with [ND-IL8] than with [T2D-IL8] (p < 0.005). The PI3K-pathway inhibitor LY294002 reduced IL8-induced MMP2 release. IL8 regulation of MMP2 release was CXCR1 dependent, as anti-CXCR1 significantly reduced MMP2 release (p < 0.05). These results suggest that high levels of IL8 secreted by T2D MT trigger reduced capillarization via lower activation of a CXCR1-PI3K pathway, followed by impaired release and activity of MMP2.


Assuntos
Diabetes Mellitus Tipo 2/genética , Interleucina-8/genética , Metaloproteinase 2 da Matriz/genética , Fibras Musculares Esqueléticas/metabolismo , Receptores de Interleucina-8A/genética , Movimento Celular/genética , Proliferação de Células/genética , Células Cultivadas , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Interleucina-8/farmacologia , Fibras Musculares Esqueléticas/patologia , Músculo Esquelético/crescimento & desenvolvimento , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Neovascularização Patológica/genética , Neovascularização Patológica/patologia , Fosfatidilinositol 3-Quinases/genética , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA