RESUMO
The variable clinical outcomes of Multiple Myeloma (MM) patients are incompletely defined by current prognostication tools. We examined the clinical utility of high-resolution telomere length analysis as a prognostic marker in MM. Cohort stratification, using a previously determined length threshold for telomere dysfunction, revealed that patients with short telomeres had a significantly shorter overall survival (P < 0·0001; HR = 3·4). Multivariate modelling using forward selection identified International Staging System (ISS) stage as the most important prognostic factor, followed by age and telomere length. Importantly, each ISS prognostic subset could be further risk-stratified according to telomere length, supporting the inclusion of this parameter as a refinement of the ISS.
Assuntos
Mieloma Múltiplo/genética , Encurtamento do Telômero , DNA de Neoplasias/genética , Instabilidade Genômica , Humanos , Estimativa de Kaplan-Meier , Gamopatia Monoclonal de Significância Indeterminada/genética , Mieloma Múltiplo/diagnóstico , Mieloma Múltiplo/patologia , Estadiamento de Neoplasias , PrognósticoRESUMO
Telomere dysfunction is implicated in the generation of large-scale genomic rearrangements that drive progression to malignancy. In this study we used high-resolution single telomere length analysis (STELA) to examine the potential role of telomere dysfunction in 80 myelodysplastic syndrome (MDS) and 95 de novo acute myeloid leukaemia (AML) patients. Despite the MDS cohort being older, they had significantly longer telomeres than the AML cohort (P < 0·0001) where telomere length was also significantly shorter in younger AML patients (age <60 years) (P = 0·02) and in FLT3 internal tandem duplication-mutated AML patients (P = 0·03). Using a previously determined telomere length threshold for telomere dysfunction (3·81 kb) did not provide prognostic resolution in AML [Hazard ratio (HR) = 0·68, P = 0·2]. In contrast, the same length threshold was highly prognostic for overall survival in the MDS cohort (HR = 5·0, P < 0·0001). Furthermore, this telomere length threshold was an independent parameter in multivariate analysis when adjusted for age, gender, cytogenetic risk group, number of cytopenias and International Prognostic Scoring System (IPSS) score (HR = 2·27, P < 0·0001). Therefore, telomere length should be assessed in a larger prospective study to confirm its prognostic role in MDS with a view to integrating this variable into a revised IPSS.
Assuntos
Leucemia Mieloide Aguda/patologia , Síndromes Mielodisplásicas/patologia , Telômero/patologia , Adulto , Idoso , Biomarcadores Tumorais/metabolismo , Intervalo Livre de Doença , Feminino , Humanos , Leucemia Mieloide Aguda/enzimologia , Leucemia Mieloide Aguda/mortalidade , Masculino , Pessoa de Meia-Idade , Síndromes Mielodisplásicas/enzimologia , Síndromes Mielodisplásicas/mortalidade , Prognóstico , Estudos Prospectivos , Fatores de Risco , Telomerase/metabolismo , Adulto JovemRESUMO
Defining the prognosis of individual cancer sufferers remains a significant clinical challenge. Here we assessed the ability of high-resolution single telomere length analysis (STELA), combined with an experimentally derived definition of telomere dysfunction, to predict the clinical outcome of patients with chronic lymphocytic leukaemia (CLL). We defined the upper telomere length threshold at which telomere fusions occur and then used the mean of the telomere 'fusogenic' range as a prognostic tool. Patients with telomeres within the fusogenic range had a significantly shorter overall survival (P < 0·0001; Hazard ratio [HR] = 13·2, 95% confidence interval [CI] = 11·6-106·4) and this was preserved in early-stage disease patients (P < 0·0001, HR=19·3, 95% CI = 17·8-802·5). Indeed, our assay allowed the accurate stratification of Binet stage A patients into those with indolent disease (91% survival at 10 years) and those with poor prognosis (13% survival at 10 years). Furthermore, patients with telomeres above the fusogenic mean showed superior prognosis regardless of their IGHV mutation status or cytogenetic risk group. In keeping with this finding, telomere dysfunction was the dominant variable in multivariate analysis. Taken together, this study provides compelling evidence for the use of high-resolution telomere length analysis coupled with a definition of telomere dysfunction in the prognostic assessment of CLL.
Assuntos
Leucemia Linfocítica Crônica de Células B/genética , Encurtamento do Telômero/fisiologia , Telômero/fisiologia , Estudos de Coortes , DNA de Neoplasias/genética , Humanos , Região Variável de Imunoglobulina/genética , Leucemia Linfocítica Crônica de Células B/diagnóstico , Leucemia Linfocítica Crônica de Células B/patologia , Mutação , Estadiamento de Neoplasias , Prognóstico , Análise de Sobrevida , Homeostase do Telômero/fisiologiaRESUMO
Short dysfunctional telomeres are capable of fusion, generating dicentric chromosomes and initiating breakage-fusion-bridge cycles. Cells that escape the ensuing cellular crisis exhibit large-scale genomic rearrangements that drive clonal evolution and malignant progression. We demonstrate that there is an absolute requirement for fully functional DNA ligase III (LIG3), but not ligase IV (LIG4), to facilitate the escape from a telomere-driven crisis. LIG3- and LIG4-dependent alternative (A) and classical (C) nonhomologous end-joining (NHEJ) pathways were capable of mediating the fusion of short dysfunctional telomeres, both displaying characteristic patterns of microhomology and deletion. Cells that failed to escape crisis exhibited increased proportions of C-NHEJ-mediated interchromosomal fusions, whereas those that escaped displayed increased proportions of intrachromosomal fusions. We propose that the balance between inter- and intrachromosomal telomere fusions dictates the ability of human cells to escape crisis and is influenced by the relative activities of A- and C-NHEJ at short dysfunctional telomeres.
Assuntos
DNA Ligases/fisiologia , Homeostase do Telômero , Apoptose , Domínio Catalítico , Reparo do DNA por Junção de Extremidades , DNA Ligase Dependente de ATP , Células HCT116 , Humanos , Proteínas de Ligação a Poli-ADP-Ribose , Recombinação Genética , Proteínas de XenopusRESUMO
BACKGROUND: Telomere shortening, dysfunction, and fusion may facilitate the acquisition of large-scale genomic rearrangements, driving clonal evolution and tumor progression. The relative contribution that telomere dysfunction and/or APC mutation play in the chromosome instability that occurs during colorectal tumorigenesis is not clear. METHODS: We used high-resolution telomere length and fusion analysis to analyze 85 adenomatous colorectal polyps obtained from 10 patients with familial adenomatous polyposis and a panel of 50 colorectal carcinomas with patient-matched normal colonic mucosa. Telomerase activity was determined using the telomeric repeat amplification protocol. Array-CGH was used to detect large-scale genomic rearrangements. Pearson correlation and Student t test were used, and all statistical tests were two-sided. RESULTS: Despite the presence of telomerase activity, we observed apparent telomere shortening in colorectal polyps that correlated with large-scale genomic rearrangements (P < .0001) but was independent of polyp size and indistinguishable from that observed in colorectal carcinomas (P = .82). We also observed apparent lengthening of telomeres in both polyps and carcinomas. The extensive differences in mean telomere length of up to 4.6kb between patient-matched normal mucosa and polyps were too large to be accounted for by replicative telomere erosion alone. Telomere fusion events were detected in both polyps and carcinomas; the mutational spectrum accompanying fusion was consistent with alternative nonhomologous end joining. CONCLUSIONS: Telomere length distributions observed in colorectal polyps reflect the telomere length composition of the normal originating cells from which clonal growth was initiated. Originating cells containing both short telomeres and APC mutations may give rise to polyps that exhibit short telomeres and are prone to telomere dysfunction, driving genomic instability and progression to malignancy. J Natl Cancer Inst;2013;105:1202-1211.