Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Rev Lett ; 132(9): 096701, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38489626

RESUMO

The search for new materials for energy-efficient electronic devices has gained unprecedented importance. Among the various classes of magnetic materials driving this search are antiferromagnets, magnetoelectrics, and systems with topological spin excitations. Cu_{3}TeO_{6} is a material that belongs to all three of these classes. Combining static electric polarization and magnetic torque measurements with phenomenological simulations we demonstrate that magnetic-field-induced spin reorientation needs to be taken into account to understand the linear magnetoelectric effect in Cu_{3}TeO_{6}. Our calculations reveal that the magnetic field pushes the system from the nonpolar ground state to the polar magnetic structures. However, nonpolar structures only weakly differing from the obtained polar ones exist due to the weak effect that the field-induced breaking of some symmetries has on the calculated structures. Among those symmetries is the PT (1[over ¯]^{'}) symmetry, preserved for Dirac points found in Cu_{3}TeO_{6}. Our findings establish Cu_{3}TeO_{6} as a promising playground to study the interplay of spintronics-related phenomena.

2.
Inorg Chem ; 63(26): 12218-12230, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38885971

RESUMO

The dimeric (gemini) as well as metallosurfactants exhibit enhanced physicochemical properties compared with conventional surfactants. By uniting the benefits of both, a series of novel dimeric metallosurfactants of the type (12-2-12)[MBr4] (M = Co, Ni, Cu and Zn) was successfully prepared by the reaction of the dimeric surfactant bis(N,N-dimethyl-N-dodecyl)ethylene-1,2-diammonium dibromide, 12-2-12, and the MBr2 salt. Structures and magnetic properties of the materials were studied comprehensively in the solid state, while their micellization was explored in solution. The obtained results unveil that the incorporation and the choice of transition metal more significantly influence surfactants' structures ((12-2-12)2+ cations adopt V-, U-, or trans-conformations) and the magnetic features (metal ions form 1D or 2D magnetic lattice) than their solution properties. However, all synthesized metallosurfactants display improved self-assembly properties compared with the metal-free precursor. The investigated systems represent a fruitful platform for the development of multifunctional materials as they are simple to produce, can be obtained in high yields, and show advanced properties both in solution and in the solid state. Notably, this work unveils a simple approach to the design and synthesis of novel low-dimensional magnetic systems of great potential for future spintronic and optoelectronic devices.

3.
Chemphyschem ; 18(17): 2397-2408, 2017 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-28636148

RESUMO

Detailed single-crystal electron spin resonance (ESR) analysis of oxalamide complexes with halogen-bridged copper dimers, supported by X-ray, magnetic susceptibility, and powder ESR studies, is reported. Four complexes with two different ligands are synthesized: [CuLA (µ-X)]2 and [CuLV (µ-X)]2 , for which LA =N-(l-alanine methyl ester)-N'-[(2-pyridine-2-yl)methyl]oxalamide and LV =N-(l-valine methyl ester)-N'-[(2-pyridine-2-yl)methyl]oxalamide, for which X=Cl or Br. X-ray analysis shows that the geometry at each copper(II) ion is square pyramidal, whereas two pyramids share one base-to-apex edge with parallel basal planes. The complexes are linked by hydrogen bonds into infinite chains and are further linked into a 3D network. Susceptibility measurements show that the copper centers in the dimers are weakly antiferromagnetically coupled (|J|≈1-2 cm-1 ). From powder ESR spectroscopy, the g values and dx2-y2 orbital as the ground state of the unpaired electron are determined. The complexes show unusual anisotropic splitting and merging of the ESR lines if their single crystals rotate in a magnetic field. The observation of this partially resolved intradimer dipolar splitting enables estimation of the weak interdimer exchange interaction parameter |J'|≈0.001 cm-1 .

4.
J Phys Condens Matter ; 22(2): 026006, 2010 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-21386270

RESUMO

dc Magnetic susceptibility measurements and the torque magnetometry were used to experimentally probe the symmetry of the antiferromagnetically (AFM) ordered state of Bi(2)CuO(4). A phenomenological approach to the anisotropy energy is used to model the angular dependence of torque for easy axis and easy plane anisotropy. Comparison of these results with the experimentally obtained curves leads to the conclusion that the antiferromagnetically ordered state in Bi(2)CuO(4) has an easy plane anisotropy with the c plane as an easy plane. The estimated value of the critical field for the spin-flop in the easy plane is H(c)≈15-20 kOe giving the easy plane anisotropy energy constant K(22)≈27-47×10(3) erg mol(-1). The resulting antiferromagnetic structure contains two equally populated mutually perpendicular AFM domains in zero magnetic field.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA