Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
New Phytol ; 196(1): 162-172, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22775349

RESUMO

• Increasing atmospheric concentrations of phytotoxic ozone (O(3) ) can constrain growth and carbon sink strength of forest trees, potentially exacerbating global radiative forcing. Despite progress in the conceptual understanding of the impact of O(3) on plants, it is still difficult to detect response patterns at the leaf level. • Here, we employed principal component analysis (PCA) to analyse a database containing physiological leaf-level parameters of 60-yr-old Fagus sylvatica (European beech) trees. Data were collected over two climatically contrasting years under ambient and twice-ambient O(3) regimes in a free-air forest environment. • The first principal component (PC1) of the PCA was consistently responsive to O(3) and crown position within the trees over both years. Only a few of the original parameters showed an O(3) effect. PC1 was related to parameters indicative of oxidative stress signalling and changes in carbohydrate metabolism. PC1 correlated with cumulative O(3) uptake over preceding days. • PC1 represents an O(3) -responsive multivariate pattern detectable in the absence of consistently measurable O(3) effects on individual leaf-level parameters. An underlying effect of O(3) on physiological processes is indicated, providing experimental confirmation of theoretical O(3) response patterns suggested previously.


Assuntos
Fagus/efeitos dos fármacos , Fagus/fisiologia , Ozônio/farmacologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/fisiologia , Análise de Variância , Europa (Continente) , Fagus/crescimento & desenvolvimento , Conceitos Meteorológicos , Análise Multivariada , Ozônio/metabolismo , Análise de Componente Principal , Estações do Ano
2.
Tree Physiol ; 28(5): 713-9, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18316303

RESUMO

We quantified ascorbate, glutathione and alpha-tocopherol in fine roots of mature Fagus sylvatica L. under free-air canopy ozone (O(3)) exposure (twice ambient O(3) concentration, 2x[O(3)]) during two growing seasons that differed in the extent of summer drought (exceptional drought year 2003, average year 2004). This design allowed us to test whether O(3) exposure or drought, or both, affected root antioxidants during the growing season. In both years, root ascorbate and alpha-tocopherol showed a similar relationship with volumetric soil water content (SWC): ascorbate concentrations on a root dry mass basis increased from about 6 to 12 micromol g(-1) when SWC dropped from 25 to 20%, and a-tocopherol increased from 100 to 150 nmol g(-1) at SWC values below 20%. Root glutathione showed no relationship with SWC or differences between the dry and the average year, but it was significantly and consistently diminished by 2x[O(3)]. Our results were inconclusive as to whether shoot-root translocation of glutathione or glutathione production in the roots was diminished. Phloem glutathione concentrations in the canopy remained constant, but reduced transport velocity in the phloem and, as a consequence, reduced mass flow of glutathione cannot be ruled out.


Assuntos
Antioxidantes/metabolismo , Desastres , Fagus/efeitos dos fármacos , Ozônio/farmacologia , Raízes de Plantas/efeitos dos fármacos , Ácido Ascórbico/metabolismo , Fagus/crescimento & desenvolvimento , Fagus/metabolismo , Glutationa/metabolismo , Floema/efeitos dos fármacos , Floema/crescimento & desenvolvimento , Floema/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , alfa-Tocoferol/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA