Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Evol Biol ; 37(5): 487-500, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38483086

RESUMO

Sexual dimorphism can evolve in response to sex-specific selection pressures that vary across habitats. We studied sexual differences in subterranean amphipods Niphargus living in shallow subterranean habitats (close to the surface), cave streams (intermediate), and cave lakes (deepest and most isolated). These three habitats differ because at greater depths there is lower food availability, reduced predation, and weaker seasonality. Additionally, species near the surface have a near-even adult sex ratio (ASR), whereas species from cave lakes have a female-biased ASR. We hypothesized (a) a decrease in sexual dimorphism from shallow subterranean habitats to cave lake species because of weaker sexual selection derived from changes in the ASR and (b) an increase in female body size in cave lakes because of stronger fecundity selection on account of oligotrophy, reduced predation, and weaker seasonality. We measured body size and two sexually dimorphic abdominal appendages for all 31 species and several behaviours related to male competition (activity, risk-taking, exploration) for 12 species. Species with an equal ASR that live close to the surface exhibited sexual dimorphism in all three morphological traits, but not in behaviour. The body size of females increased from the surface to cave lakes, but no such trend was observed in males. In cave lake species, males and females differed neither morphologically nor behaviourally. Our results are consistent with the possibility that sexual and fecundity selection covary across the three habitats, which indirectly and directly, respectively, shape the degree of sexual dimorphism in Niphargus species.


Assuntos
Anfípodes , Ecossistema , Caracteres Sexuais , Animais , Feminino , Masculino , Anfípodes/fisiologia , Anfípodes/anatomia & histologia , Tamanho Corporal , Lagos , Razão de Masculinidade
2.
Microb Ecol ; 83(3): 714-723, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34218293

RESUMO

The degradation capacity and utilisation of complex plant substrates are crucial for the functioning of saprobic fungi and different plant symbionts with fundamental functions in ecosystems. Measuring the growth capacity and biomass of fungi on such systems is a challenging task. We established a new micro-scale experimental setup using substrates made of different plant species and organs as media for fungal growth. We adopted and tested a reliable and simple titration-based method for the estimation of total fungal biomass within the substrates using fluorescence-labelled lectin. We found that the relationship between fluorescence intensity and fungal dry weight was strong and linear but differed among fungi. The effect of the plant organ (i.e. root vs. shoot) used as substrate on fungal growth differed among plant species and between root endophytic fungal species. The novel microscale experimental system is useful for screening the utilisation of different substrates, which can provide insight into the ecological roles and functions of fungi. Furthermore, our fungal biomass estimation method has applications in various fields. As the estimation is based on the fungal cell wall, it measures the total cumulative biomass produced in a certain environment.


Assuntos
Ecossistema , Endófitos , Biomassa , Fluorescência , Fungos/metabolismo , Raízes de Plantas/microbiologia
3.
J Evol Biol ; 34(10): 1653-1661, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34424594

RESUMO

Sex allocation theory predicts that the proportion of daughters to sons will evolve in response to ecological conditions that determine the costs and benefits of producing each sex. All else being equal, the adult sex ratio (ASR) should also vary with ecological conditions. Many studies of subterranean species reported female-biased ASR, but no systematic study has yet been conducted. We test the hypothesis that the ASR becomes more female-biased with increased isolation from the surface. We compiled a data set of ASRs of 35 species in the subterranean amphipod Niphargus, each living in one of three distinct habitats (surface-subterranean boundary, cave streams, phreatic lakes) representing an environmental gradient of increased isolation underground. The ASR was female-biased in 27 of 35 species; the bias was statistically significant in 12 species. We found a significant difference in the ASR among habitats after correction for phylogeny. It is most weakly female-biased at the surface-subterranean boundary and most strongly female-biased in phreatic lakes. Additional modelling suggests that the ASR has evolved towards a single value for both surface-subterranean boundary and cave stream-dwelling species, and another value for 9 of 11 phreatic lake dwellers. We suggest that a history of inbreeding in subterranean populations might lower inbreeding depression such that kin selection favours mating with siblings. This could select for a female-biased offspring sex ratio due to local mate competition among brothers. The observed patterns in sex ratios in subterranean species make them a group worthy of more attention from those interested in sex allocation theory.


Assuntos
Anfípodes , Anfípodes/genética , Animais , Cavernas , Ecossistema , Feminino , Masculino , Filogenia , Razão de Masculinidade
4.
J Evol Biol ; 32(12): 1450-1455, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31604005

RESUMO

We published a study recently testing the link between brain size and behavioural plasticity using brain size selected guppy (Poecilia reticulata) lines (2019, Journal of Evolutionary Biology, 32, 218-226). Only large-brained fish showed habituation to a new, but actually harmless environment perceived as risky, by increasing movement activity over the 20-day observation period. We concluded that "Our results suggest that brain size likely explains some of the variation in behavioural plasticity found at the intraspecific level". In a commentary published in the same journal, Haave-Audet et al. challenged the main message of our study, stating that (a) relative brain size is not a suitable proxy for cognitive ability and (b) habituation measured by us is likely not adaptive and costly. In our response, we first show that a decade's work has proven repeatedly that relative brain size is indeed positively linked to cognitive performance in our model system. Second, we discuss how switching from stressed to unstressed behaviour in stressful situations without real risk is likely adaptive. Finally, we point out that the main cost of behavioural plasticity in our case is the development and maintenance of the neural system needed for information processing, and not the expression of plasticity. We hope that our discussion with Haave-Audet et al. helps clarifying some central issues in this emerging research field.


Assuntos
Poecilia , Animais , Encéfalo , Cognição , Movimento , Tamanho do Órgão
5.
J Evol Biol ; 32(3): 218-226, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30474900

RESUMO

Understanding how animal personality (consistent between-individual behavioural differences) arises has become a central topic in behavioural sciences. This endeavour is complicated by the fact that not only the mean behaviour of individuals (behavioural type) but also the strength of their reaction to environmental change (behavioural plasticity) varies consistently. Personality and cognitive abilities are linked, and we suggest that behavioural plasticity could also be explained by differences in brain size (a proxy for cognitive abilities), since accurate decisions are likely essential to make behavioural plasticity beneficial. We test this idea in guppies (Poecilia reticulata), artificially selected for large and small brain size, which show clear cognitive differences between selection lines. To test whether those lines differed in behavioural plasticity, we reared them in groups in structurally enriched environments and then placed adults individually into empty tanks, where we presented them daily with visual predator cues and monitored their behaviour for 20 days with video-aided motion tracking. We found that individuals differed consistently in activity and risk-taking, as well as in behavioural plasticity. In activity, only the large-brained lines demonstrated habituation (increased activity) to the new environment, whereas in risk-taking, we found sensitization (decreased risk-taking) in both brain size lines. We conclude that brain size, potentially via increasing cognitive abilities, may increase behavioural plasticity, which in turn can improve habituation to novel environments. However, the effects seem to be behaviour-specific. Our results suggest that brain size likely explains some of the variation in behavioural plasticity found at the intraspecific level.


Assuntos
Comportamento Animal , Encéfalo/anatomia & histologia , Habituação Psicofisiológica , Poecilia/anatomia & histologia , Animais , Feminino , Masculino , Tamanho do Órgão
6.
Naturwissenschaften ; 106(3-4): 7, 2019 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-30729319

RESUMO

Most studies on animal personality evaluate individual mean behaviour to describe individual behavioural strategy, while often neglecting behavioural variability on the within-individual level. However, within-individual behavioural plasticity (variation induced by environment) and within-individual residual variation (regulatory behavioural precision) are recognized as biologically valid components of individual behaviour, but the evolutionary ecology of these components is still less understood. Here, we tested whether behaviour of common pill bugs (Armadillidium vulgare) differs on the among- and within-individual level and whether it is affected by various individual specific state-related traits (sex, size and Wolbachia infection). To this aim, we assayed risk-taking in familiar vs. unfamiliar environments 30 times along 38 days and applied double modelling statistical technique to handle the complex hierarchical structure for both individual-specific trait means and variances. We found that there are significant among-individual differences not only in mean risk-taking behaviour but also in environment- and time-induced behavioural plasticity and residual variation. Wolbachia-infected individuals took less risk than healthy conspecifics; in addition, individuals became more risk-averse with time. Residual variation decreased with time, and individuals expressed higher residual variation in the unfamiliar environment. Further, sensitization was stronger in females and in larger individuals in general. Our results suggest that among-individual variation, behavioural plasticity and residual variation are all (i) biologically relevant components of an individual's behavioural strategy and (ii) responsive to changes in environment or labile state variables. We propose pill bugs as promising models for personality research due to the relative ease of getting repeated behavioural measurements.


Assuntos
Comportamento Animal/fisiologia , Meio Ambiente , Isópodes/fisiologia , Animais , Isópodes/microbiologia , Modelos Animais , Wolbachia/fisiologia
7.
J Anim Ecol ; 87(5): 1264-1273, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29752882

RESUMO

Behavioural consistency within and across behaviours (animal personality and behavioural syndrome, respectively) has been vigorously studied in the last decade, leading to the emergence of "animal personality" research. It has been proposed recently that not only mean behaviour (behavioural type), but the environmentally induced behavioural change (behavioural plasticity) might also differ between individuals within populations. While case studies presenting between-individual variation in behavioural plasticity have started to accumulate, the mechanisms behind its emergence are virtually unknown. We have recently demonstrated that ecologically relevant environmental stimuli during ontogeny are necessary for the development of animal personality and behavioural syndromes. However, it is unknown whether between-individual variation in behavioural plasticity is hard-wired or induced. Here, we tested whether experience with predation during development affected predator-induced behavioural plasticity in Rana dalmatina tadpoles. We ran a common garden experiment with two ontogenetic predation treatments: tadpoles developed from hatching in either the presence or absence of olfactory predator stimuli. Then, we assayed all tadpoles repeatedly for activity and risk-taking both in the absence and presence of olfactory predator stimuli. We found that (a) between-individual variation in predator-induced behavioural plasticity was present only in the group that developed in the presence of olfactory stimuli from predators and (b) previous experience with predatory stimuli resulted in lower plastic response at the group level. The latter pattern resulted from increased between-individual variation and not from universally lower individual responses. We also found that experience with predation during development increased the predictability (i.e. decreased the within-individual variation unrelated to environmental change) of activity, but not risk-taking. In line with this, tadpoles developing under perceived predatory risk expressed their activity with higher repeatability. We suggest that ecologically relevant environmental stimuli are not only fundamental for the development of animal personality and behavioural syndromes, but also for individual variation in behavioural plasticity. Thus, experience is of central importance for the emergence of individual behavioural variation at many levels.


Assuntos
Comportamento Predatório , Ranidae , Animais , Larva , Personalidade
8.
BMC Evol Biol ; 17(1): 247, 2017 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-29216829

RESUMO

BACKGROUND: The underlying mechanisms and processes that prompt the colonisation of extreme environments, such as caves, constitute major research themes of evolutionary biology and biospeleology. The special adaptations required to survive in subterranean environments (low food availability, hypoxic waters, permanent darkness), and the geographical isolation of caves, nominate cave biodiversity as ideal subjects to answer long-standing questions concerning the interplay amongst adaptation, biogeography, and evolution. The present project aims to examine the phylogeographic patterns exhibited by two sympatric species of surface and cave-dwelling peracarid crustaceans (Asellus aquaticus and Niphargus hrabei), and in doing so elucidate the possible roles of isolation and exaptation in the colonisation and successful adaptation to the cave environment. RESULTS: Specimens of both species were sampled from freshwater hypogean (cave) and epigean (surface) habitats in Hungary, and additional data from neighbouring countries were sourced from Genbank. Sequencing of mitochondrial and nuclear loci revealed, through haplotype network reconstruction (TCS) and phylogenetic inference, the genetic structure, phylogeographic patterns, and divergence-time estimates of A. aquaticus and N. hrabei surface and cave populations. Contrasting phylogeographic patterns were found between species, with A. aquaticus showing strong genetic differentiation between cave and surface populations and N. hrabei lacking any evidence of genetic structure mediated by the cave environment. Furthermore, N. hrabei populations show very low levels of genetic differentiation throughout their range, which suggests the possibility of recent expansion events over the last few thousand years. CONCLUSIONS: Isolation by cave environment, rather than distance, is likely to drive the genetic structuring observed between immediately adjacent cave and surface populations of A. aquaticus, a predominantly surface species with only moderate exaptations to subterranean life. For N. hrabei, in which populations exhibit a fully 'cave-adapted' (troglomorphic) phenotype, the lack of genetic structure suggests that subterranean environments do not pose a dispersal barrier for this surface-cave species.


Assuntos
Cavernas , Isópodes/genética , Filogeografia , Animais , Sequência de Bases , Teorema de Bayes , Biodiversidade , Água Doce , Haplótipos/genética , Fenótipo , Filogenia , Fatores de Tempo
9.
Mol Ecol ; 26(6): 1557-1575, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28052431

RESUMO

Quantitative traits important to organismal function and fitness, such as brain size, are presumably controlled by many small-effect loci. Deciphering the genetic architecture of such traits with traditional quantitative trait locus (QTL) mapping methods is challenging. Here, we investigated the genetic architecture of brain size (and the size of five different brain parts) in nine-spined sticklebacks (Pungitius pungitius) with the aid of novel multilocus QTL-mapping approaches based on a de-biased LASSO method. Apart from having more statistical power to detect QTL and reduced rate of false positives than conventional QTL-mapping approaches, the developed methods can handle large marker panels and provide estimates of genomic heritability. Single-locus analyses of an F2 interpopulation cross with 239 individuals and 15 198, fully informative single nucleotide polymorphisms (SNPs) uncovered 79 QTL associated with variation in stickleback brain size traits. Many of these loci were in strong linkage disequilibrium (LD) with each other, and consequently, a multilocus mapping of individual SNPs, accounting for LD structure in the data, recovered only four significant QTL. However, a multilocus mapping of SNPs grouped by linkage group (LG) identified 14 LGs (1-6 depending on the trait) that influence variation in brain traits. For instance, 17.6% of the variation in relative brain size was explainable by cumulative effects of SNPs distributed over six LGs, whereas 42% of the variation was accounted for by all 21 LGs. Hence, the results suggest that variation in stickleback brain traits is influenced by many small-effect loci. Apart from suggesting moderately heritable (h2  ≈ 0.15-0.42) multifactorial genetic architecture of brain traits, the results highlight the challenges in identifying the loci contributing to variation in quantitative traits. Nevertheless, the results demonstrate that the novel QTL-mapping approach developed here has distinctive advantages over the traditional QTL-mapping methods in analyses of dense marker panels.


Assuntos
Encéfalo , Mapeamento Cromossômico , Tipagem de Sequências Multilocus , Smegmamorpha/genética , Animais , Genômica/métodos , Desequilíbrio de Ligação , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas
10.
Proc Biol Sci ; 282(1810)2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26108633

RESUMO

The mosaic model of brain evolution postulates that different brain regions are relatively free to evolve independently from each other. Such independent evolution is possible only if genetic correlations among the different brain regions are less than unity. We estimated heritabilities, evolvabilities and genetic correlations of relative size of the brain, and its different regions in the three-spined stickleback (Gasterosteus aculeatus). We found that heritabilities were low (average h(2) = 0.24), suggesting a large plastic component to brain architecture. However, evolvabilities of different brain parts were moderate, suggesting the presence of additive genetic variance to sustain a response to selection in the long term. Genetic correlations among different brain regions were low (average rG = 0.40) and significantly less than unity. These results, along with those from analyses of phenotypic and genetic integration, indicate a high degree of independence between different brain regions, suggesting that responses to selection are unlikely to be severely constrained by genetic and phenotypic correlations. Hence, the results give strong support for the mosaic model of brain evolution. However, the genetic correlation between brain and body size was high (rG = 0.89), suggesting a constraint for independent evolution of brain and body size in sticklebacks.


Assuntos
Evolução Biológica , Encéfalo/anatomia & histologia , Variação Genética , Smegmamorpha/anatomia & histologia , Smegmamorpha/genética , Animais , Feminino , Masculino , Tamanho do Órgão
11.
Front Zool ; 12: 38, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26705404

RESUMO

BACKGROUND: Plasticity in brain size and the size of different brain regions during early ontogeny is known from many vertebrate taxa, but less is known about plasticity in the brains of adults. In contrast to mammals and birds, most parts of a fish's brain continue to undergo neurogenesis throughout adulthood, making lifelong plasticity in brain size possible. We tested whether maturing adult three-spined sticklebacks (Gasterosteus aculeatus) reared in a stimulus-poor environment exhibited brain plasticity in response to environmental enrichment, and whether these responses were sex-specific, thus altering the degree of sexual size dimorphism in the brain. RESULTS: Relative sizes of total brain and bulbus olfactorius showed sex-specific responses to treatment: males developed larger brains but smaller bulbi olfactorii than females in the enriched treatment. Hence, the degree of sexual size dimorphism (SSD) in relative brain size and the relative size of the bulbus olfactorius was found to be environment-dependent. Furthermore, the enriched treatment induced development of smaller tecta optica in both sexes. CONCLUSIONS: These results demonstrate that adult fish can alter the size of their brain (or brain regions) in response to environmental stimuli, and these responses can be sex-specific. Hence, the degree of SSD in brain size can be environment-dependent, and our results hint at the possibility of a large plastic component to SSD in stickleback brains. Apart from contributing to our understanding of the processes shaping and explaining variation in brain size and the size of different brain regions in the wild, the results show that provision of structural complexity in captive environments can influence brain development. Assuming that the observed plasticity influences fish behaviour, these findings may also have relevance for fish stocking, both for economical and conservational purposes.

12.
Oecologia ; 178(1): 129-40, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25656582

RESUMO

The focus of evolutionary behavioural ecologists has recently turned towards understanding the causes and consequences of behavioural consistency, manifesting either as animal personality (consistency in a single behaviour) or behavioural syndrome (consistency across more behaviours). Behavioural type (mean individual behaviour) has been linked to life-history strategies, leading to the emergence of the integrated pace-of-life syndrome (POLS) theory. Using Rana dalmatina tadpoles as models, we tested if behavioural consistency and POLS could be detected during the early ontogenesis of this amphibian. We targeted two ontogenetic stages and measured activity, exploration and risk-taking in a common garden experiment, assessing both individual behavioural type and intra-individual behavioural variation. We observed that activity was consistent in all tadpoles, exploration only became consistent with advancing age and risk-taking only became consistent in tadpoles that had been tested, and thus disturbed, earlier. Only previously tested tadpoles showed trends indicative of behavioural syndromes. We found an activity-age at metamorphosis POLS in the previously untested tadpoles irrespective of age. Relative growth rate correlated positively with the intra-individual variation of activity of the previously untested older tadpoles. In previously tested older tadpoles, intra-individual variation of exploration correlated negatively and intra-individual variation of risk-taking correlated positively with relative growth rate. We provide evidence for behavioural consistency and POLS in predator- and conspecific-naive tadpoles. Intra-individual behavioural variation was also correlated to life history, suggesting its relevance for the POLS theory. The strong effect of moderate disturbance related to standard behavioural testing on later behaviour draws attention to the pitfalls embedded in repeated testing.


Assuntos
Comportamento Animal , Larva , Metamorfose Biológica , Personalidade , Ranidae , Assunção de Riscos , Animais , Evolução Biológica , Larva/crescimento & desenvolvimento , Ranidae/crescimento & desenvolvimento
13.
Behav Genet ; 44(1): 77-88, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24190427

RESUMO

The genetic architecture of behavioral traits is yet relatively poorly understood in most non-model organisms. Using an F2-intercross (n = 283 offspring) between behaviorally divergent nine-spined stickleback (Pungitius pungitius) populations, we tested for and explored the genetic basis of different behavioral traits with the aid of quantitative trait locus (QTL) analyses based on 226 microsatellite markers. The behaviors were analyzed both separately (viz. feeding activity, risk-taking and exploration) and combined in order to map composite behavioral type. Two significant QTL-explaining on average 6 % of the phenotypic variance-were detected for composite behavioral type on the experiment-wide level, located on linkage groups 3 and 8. In addition, several suggestive QTL located on six other linkage groups were detected on the chromosome-wide level. Apart from providing evidence for the genetic basis of behavioral variation, the results provide a good starting point for finer-scale analyses of genetic factors influencing behavioral variation in the nine-spined stickleback.


Assuntos
Comportamento Animal/fisiologia , Peixes/genética , Locos de Características Quantitativas/genética , Animais , Feminino , Ligação Genética/genética , Genótipo , Masculino , Repetições de Microssatélites/genética
14.
Ecol Evol ; 14(8): e70061, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39108570

RESUMO

Subterranean and surface habitats are in stark contrast in several environmental factors. Therefore, adaptation to the subterranean environment typically impedes the (re)colonisation of surface habitats. The genus Niphargus includes amphipod crustaceans that primarily occupy subterranean habitats. All its species show typical adaptations to the subterranean environment. However, some Niphargus species occur in surface-subterranean ecotones. To understand whether (i) habitat-based phenotypic divergence is present between the cave and the ecotone species and (ii) similar phenotypes emerge independently in each ecotone, we studied morphological divergence between four cave and four ecotone Niphargus species based on 13 functional morphological traits. To account for different selection acting on the sexes, we included both males (N = 244) and females (N = 222). Nine out of 13 traits showed habitat-divergence. Traits related to feeding and crawling were shorter, while traits related to oxygenation were larger in ecotone species. Eleven out of 13 traits were sexually dimorphic. Traits related to oxygenation and crawling were larger in females, while the trait related to swimming was larger in males. We found that the extent of sexual dimorphism differs between the habitats in eight traits related to sensing, feeding, oxygenation and crawling. Additionally, we found that in certain traits related to sensing and oxygenation, habitat-related differences are only present in one sex, but not the other. We conclude that the detected differences between the cave and the ecotone species indicate divergent evolution, where similarities among the different species within habitat type indicate convergent evolution. The high degree of sexual dimorphism paired with differences in sexual dimorphism between the habitats in certain traits suggest that sexual and fecundity selections have comparable effects to environmental selection. Thus, studies of habitat-dependent adaptations investigating one sex only, or not considering sexual dimorphism, can lead to erroneous conclusions.

15.
Sci Rep ; 14(1): 14200, 2024 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902323

RESUMO

The study of consistent between-individual behavioural variation in single (animal personality) and across two or more behavioural traits (behavioural syndrome) is a central topic of behavioural ecology. Besides behavioural type (individual mean behaviour), behavioural predictability (environment-independent within-individual behavioural variation) is now also seen as an important component of individual behavioural strategy. Research focus is still on the 'Big Five' traits (activity, exploration, risk-taking, sociability and aggression), but another prime candidate to integrate to the personality framework is behavioural thermoregulation in small-bodied poikilotherms. Here, we found animal personality in thermoregulatory strategy (selected body temperature, voluntary thermal maximum, setpoint range) and 'classic' behavioural traits (activity, sheltering, risk-taking) in common lizards (Zootoca vivipara). Individual state did not explain the between-individual variation. There was a positive behavioural type-behavioural predictability correlation in selected body temperature. Besides an activity-risk-taking syndrome, we also found a risk-taking-selected body temperature syndrome. Our results suggest that animal personality and behavioural syndrome are present in common lizards, both including thermoregulatory and 'classic' behavioural traits, and selecting high body temperature with high predictability is part of the risk-prone behavioural strategy. We propose that thermoregulatory behaviour should be considered with equal weight to the 'classic' traits in animal personality studies of poikilotherms employing active behavioural thermoregulation.


Assuntos
Comportamento Animal , Regulação da Temperatura Corporal , Lagartos , Animais , Lagartos/fisiologia , Regulação da Temperatura Corporal/fisiologia , Comportamento Animal/fisiologia , Personalidade/fisiologia , Masculino , Feminino
16.
Sci Total Environ ; 917: 170475, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38296092

RESUMO

Under the increasing threat to native ecosystems posed by non-native species invasions, there is an urgent need for decision support tools that can more effectively identify non-native species likely to become invasive. As part of the screening (first step) component in non-native species risk analysis, decision support tools have been developed for aquatic and terrestrial organisms. Amongst these tools is the Weed Risk Assessment (WRA) for screening non-native plants. The WRA has provided the foundations for developing the first-generation WRA-type Invasiveness Screening Kit (ISK) tools applicable to a range of aquatic species, and more recently for the second-generation ISK tools applicable to all aquatic organisms (including plants) and terrestrial animals. Given the most extensive usage of the latter toolkits, this study describes the development and application of the Terrestrial Plant Species Invasiveness Screening Kit (TPS-ISK). As a second-generation ISK tool, the TPS-ISK is a multilingual turnkey application that provides several advantages relative to the WRA: (i) compliance with the minimum standards against which a protocol should be evaluated for invasion process and management approaches; (ii) enhanced questionnaire comprehensiveness including a climate change component; (iii) provision of a level of confidence; (iv) error-free computation of risk scores; (v) multilingual support; (vi) possibility for across-study comparisons of screening outcomes; (vii) a powerful graphical user interface; (viii) seamless software deployment and accessibility with improved data exchange. The TPS-ISK successfully risk-ranked five representative sample species for the main taxonomic groups supported by the tool and ten angiosperms previously screened with the WRA for Turkey. The almost 20-year continuous development and evolution of the ISK tools, as opposed to the WRA, closely meet the increasing demand by scientists and decision-makers for a reliable, comprehensive, updatable and easily deployable decision support tool. For terrestrial plant screening, these requirements are therefore met by the newly developed TPS-ISK.


Assuntos
Ecossistema , Espécies Introduzidas , Animais , Plantas , Medição de Risco , Fatores de Risco
17.
Mol Ecol ; 22(23): 5861-76, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24102814

RESUMO

Body size is an ecologically important trait shown to be genetically variable both within and among different animal populations as revealed by quantitative genetic studies. However, few studies have looked into underlying genetic architecture of body size variability in the wild using genetic mapping methods. With the aid of quantitative trait loci (QTL) analyses based on 226 microsatellite markers, we mapped body size and growth rate traits in the nine-spined stickleback (Pungitius pungitius) using an F2 -intercross (n = 283 offspring) between size-divergent populations. In total, 17 QTL locations were detected. The proportion of phenotypic variation explained by individual body size-related QTL ranged from 3% to 12% and those related to growth parameters and increments from 3% to 10%. Several of the detected QTL affected either early or late growth. These results provide a solid starting point for more in depth investigations of structure and function of genomic regions involved in determination of body size in this popular model of ecological and evolutionary research.


Assuntos
Tamanho Corporal/genética , Locos de Características Quantitativas , Smegmamorpha/crescimento & desenvolvimento , Smegmamorpha/genética , Animais , Mapeamento Cromossômico , Ligação Genética , Genética Populacional , Repetições de Microssatélites
18.
Mol Ecol ; 22(3): 565-82, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22943747

RESUMO

In recent years, the explosion of affordable next generation sequencing technology has provided an unprecedented opportunity to conduct genome-wide studies of adaptive evolution in organisms previously lacking extensive genomic resources. Here, we characterize genome-wide patterns of variability and differentiation using pooled DNA from eight populations of the nine-spined stickleback (Pungitius pungitius L.) from marine, lake and pond environments. We developed a novel genome complexity reduction protocol, defined as paired-end double restriction-site-associated DNA (PE dRAD), to maximize read coverage at sequenced locations. This allowed us to identify over 114,000 short consensus sequences and 15,000 SNPs throughout the genome. A total of 6834 SNPs mapped to a single position on the related three-spined stickleback genome, allowing the detection of genomic regions affected by divergent and balancing selection, both between species and between freshwater and marine populations of the nine-spined stickleback. Gene ontology analysis revealed 15 genomic regions with elevated diversity, enriched for genes involved in functions including immunity, chemical stimulus response, lipid metabolism and signalling pathways. Comparisons of marine and freshwater populations identified nine regions with elevated differentiation related to kidney development, immunity and MAP kinase pathways. In addition, our analysis revealed that a large proportion of the identified SNPs mapping to LG XII is likely to represent alternative alleles from divergent X and Y chromosomes, rather than true autosomal markers following Mendelian segregation. Our work demonstrates how population-wide sequencing and combining inter- and intra-specific RAD analysis can uncover genome-wide patterns of differentiation and adaptations in a non-model species.


Assuntos
Evolução Molecular , Genética Populacional , Genômica/métodos , Smegmamorpha/genética , Animais , Mapeamento Cromossômico , Sequência Consenso , Frequência do Gene , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA
19.
Naturwissenschaften ; 100(6): 551-8, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23644520

RESUMO

During female mate choice, conspicuous male sexual signals are used to infer male quality and choose the best sire for the offspring. The theory of parasite-mediated sexual selection (Hamilton-Zuk hypothesis) presumes that parasite infection can influence the elaboration of sexual signals: resistant individuals can invest more energy into signal expression and thus advertise their individual quality through signal intensity. By preferring these males, females can provide resistance genes for their offspring. Previous research showed that nuptial throat colour of male European green lizard, Lacerta viridis, plays a role in both inter- and intrasexual selections as a condition-dependent multiple signalling system. The aim of this study was to test the predictions of the Hamilton-Zuk hypothesis on male European green lizards. By blood sampling 30 adult males during the reproductive season, we found members of the Haemogregarinidae family in all but one individual (prevalence = 96%). The infection intensity showed strong negative correlation with the throat and belly colour brightness in line with the predictions of the Hamilton-Zuk hypothesis. In addition, we found other correlations between infection intensity and other fitness-related traits, suggesting that parasite load has a remarkable effect on individual fitness. This study shows that throat patch colour of the European green lizards not only is a multiple signalling system but also possibly acts as an honest sexual signal of health state in accordance with the Hamilton-Zuk hypothesis.


Assuntos
Coccidiose/sangue , Eucoccidiida/fisiologia , Lagartos/parasitologia , Pigmentação/fisiologia , Animais , Coccidiose/patologia , Masculino , Carga Parasitária , Comportamento Sexual Animal
20.
R Soc Open Sci ; 10(9): 230303, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37680498

RESUMO

The biological significance of behavioural predictability (environment-independent within-individual behavioural variation) became accepted recently as an important part of an individual's behavioural strategy besides behavioural type (individual mean behaviour). However, we do not know how behavioural type and predictability evolve. Here, we tested different evolutionary scenarios: (i) the two traits evolve independently (lack of correlations) and (ii) the two traits' evolution is constrained (abundant correlations) due to either (ii/a) proximate constraints (direction of correlations is similar) or (ii/b) local adaptations (direction of correlations is variable). We applied a set of phylogenetic meta-analyses based on 93 effect sizes across 44 vertebrate and invertebrate species, focusing on activity and risk-taking. The general correlation between behavioural type and predictability did not differ from zero. Effect sizes for correlations showed considerable heterogeneity, with both negative and positive correlations occurring. The overall absolute (unsigned) effect size was high (Zr = 0.58), and significantly exceeded the null expectation based on randomized data. Our results support the adaptive scenario: correlations between behavioural type and predictability are abundant in nature, but their direction is variable. We suggest that the evolution of these behavioural components might be constrained in a system-specific way.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA