Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Ecol Appl ; 32(5): e2603, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35366029

RESUMO

Protected areas (PA) are an effective means of conserving biodiversity and protecting suites of valuable ecosystem services. Currently, many nations and international governments use proportional area protected as a critical metric for assessing progress towards biodiversity conservation. However, the areal and other common metrics do not assess the effectiveness of PA networks, nor do they assess how representative PA are of the ecosystems they aim to protect. Topography, stand structure, and land cover are all key drivers of biodiversity within forest environments, and are well-suited as indicators to assess the representation of PA. Here, we examine the PA network in British Columbia, Canada, through drivers derived from freely-available data and remote sensing products across the provincial biogeoclimatic ecosystem classification system. We examine biases in the PA network by elevation, forest disturbances, and forest structural attributes, including height, cover, and biomass by comparing a random sample of protected and unprotected pixels. Results indicate that PA are commonly biased towards high-elevation and alpine land covers, and that forest structural attributes of the park network are often significantly different in protected versus unprotected areas (426 out of 496 forest structural attributes found to be different; p < 0.01). Analysis of forest structural attributes suggests that establishing additional PA could ensure representation of various forest structure regimes across British Columbia's ecosystems. We conclude that these approaches using free and open remote sensing data are highly transferable and can be accomplished using consistent datasets to assess PA representations globally.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Biodiversidade , Colúmbia Britânica , Conservação dos Recursos Naturais/métodos , Florestas , Tecnologia de Sensoriamento Remoto
3.
Glob Chang Biol ; 23(3): 1036-1047, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27506958

RESUMO

Fire regimes are changing throughout the North American boreal forest in complex ways. Fire is also a major factor governing access to high-quality forage such as terricholous lichens for barren-ground caribou (Rangifer tarandus groenlandicus). Additionally, fire alters forest structure which can affect barren-ground caribou's ability to navigate in a landscape. Here, we characterize how the size and severity of fires are changing across five barren-ground caribou herd ranges in the Northwest Territories and Nunavut, Canada. Additionally, we demonstrate how time since fire, fire severity, and season result in complex changes in caribou behavioural metrics estimated using telemetry data. Fire disturbances were identified using novel gap-free Landsat surface reflectance composites from 1985 to 2011 across all herd ranges. Burn severity was estimated using the differenced normalized burn ratio. Annual area burned and burn severity were assessed through time for each herd and related to two behavioural metrics: velocity and relative turning angle. Neither annual area burned nor burn severity displayed any temporal trend within the study period. However, certain herds, such as the Ahiak/Beverly, have more exposure to fire than other herds (i.e. Cape Bathurst had a maximum forested area burned of less than 4 km2 ). Time since fire and burn severity both significantly affected velocity and relative turning angles. During fall, winter, and spring, fire virtually eliminated foraging-focused behaviour for all 26 years of analysis while more severe fires resulted in a marked increase in movement-focused behaviour compared to unburnt patches. Between seasons, caribou used burned areas as early as 1-year postfire, demonstrating complex, nonlinear reactions to time since fire, fire severity, and season. In all cases, increases in movement-focused behaviour were detected postfire. We conclude that changes in caribou behaviour immediately postfire are primarily driven by changes in forest structure rather than changes in terricholous lichen availability.


Assuntos
Comportamento Alimentar , Incêndios , Rena , Migração Animal , Animais , Canadá , Territórios do Noroeste , Nunavut , Telemetria
4.
Sci Rep ; 14(1): 6520, 2024 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-38499725

RESUMO

Habitat disturbance is a major driver of the decline of woodland caribou (Rangifer tarandus caribou) in Canada. Different disturbance agents and regimes negatively impact caribou populations to different degrees. It is therefore critical that land managers and scientists studying caribou have a detailed understanding of the disturbance regimes affecting caribou habitat. In this work we use recent advances in satellite-based disturbance detection to quantify polygonal forest disturbance regimes affecting caribou ecotypes and herds in British Columbia (BC) from 1985 to 2019. Additionally, we utilize this data to investigate harvesting rates since the implementation of the Species at Risk Act (SARA) and publication of recovery strategies for caribou in BC. Southern Mountain caribou herds are the most threatened yet experienced the highest rates of disturbance, with 22.75% of forested habitat within their ranges disturbed during the study period. Over the study period, we found that in total, 16.4% of forested area was disturbed across all caribou herd ranges. Our findings indicate that caribou in BC face high, and in many cases increasing, levels of habitat disturbance. Our results provide a detailed understanding of the polygonal disturbance regimes affecting caribou in BC at the herd scale, and highlight the need for effective implementation of policies aimed at preserving caribou habitat.


Assuntos
Rena , Animais , Colúmbia Britânica , Florestas , Ecossistema
5.
Sci Rep ; 14(1): 13717, 2024 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877188

RESUMO

The essential biodiversity variables (EBV) framework has been proposed as a monitoring system of standardized, comparable variables that represents a minimum set of biological information to monitor biodiversity change at large spatial extents. Six classes of EBVs (genetic composition, species populations, species traits, community composition, ecosystem structure and ecosystem function) are defined, a number of which are ideally suited to observation and monitoring by remote sensing systems. We used moderate-resolution remotely sensed indicators representing two ecosystem-level EBV classes (ecosystem structure and function) to assess their complementarity and redundancy across a range of ecosystems encompassing significant environmental gradients. Redundancy analyses found that remote sensing indicators of forest structure were not strongly related to indicators of ecosystem productivity (represented by the Dynamic Habitat Indices; DHIs), with the structural information only explaining 15.7% of the variation in the DHIs. Complex metrics of forest structure, such as aboveground biomass, did not contribute additional information over simpler height-based attributes that can be directly estimated with light detection and ranging (LIDAR) observations. With respect to ecosystem conditions, we found that forest types and ecosystems dominated by coniferous trees had less redundancy between the remote sensing indicators when compared to broadleaf or mixed forest types. Likewise, higher productivity environments exhibited the least redundancy between indicators, in contrast to more environmentally stressed regions. We suggest that biodiversity researchers continue to exploit multiple dimensions of remote sensing data given the complementary information they provide on structure and function focused EBVs, which makes them jointly suitable for monitoring forest ecosystems.


Assuntos
Biodiversidade , Florestas , Tecnologia de Sensoriamento Remoto , Monitoramento Ambiental/métodos , Ecossistema , Biomassa , Árvores
6.
Sci Rep ; 9(1): 1323, 2019 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-30718619

RESUMO

We assess the protective function of Canada's parks and protected areas (PPAs) by analyzing three decades of stand-replacing disturbance derived from Landsat time series data (1985-2015). Specifically, we compared rates of wildfire and harvest within 1,415 PPAs against rates of disturbance in surrounding greater park ecosystems (GPEs). We found that disturbance rates in GPEs were significantly higher (p < 0.05) than in corresponding PPAs in southern managed forests (six of Canada's 12 forested ecozones). Higher disturbance rates in GPEs were attributed to harvesting activities, as the area impacted by wildfire was not significantly different between GPEs and PPAs in any ecozone. The area burned within PPAs and corresponding GPEs was highly correlated (r = 0.90), whereas the area harvested was weakly correlated (r = 0.19). The average area burned in PPAs/GPEs below 55° N was low (0.05% yr-1) largely due to fire suppression aimed at protecting communities, timber, and recreational values, while the average burn rate was higher in northern PPAs/GPEs where fire suppression is uncommon (0.40% yr-1 in PPAs/GPEs above 55° N). Assessing regional variability in disturbance patterns and the pressures faced by PPAs can better inform policy and protection goals across Canada and the globe.

7.
PLoS One ; 13(5): e0197218, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29787562

RESUMO

Fire as a dominant disturbance has profound implications on the terrestrial carbon cycle. We present the first ever multi-decadal, spatially-explicit, 30 meter assessment of fire regimes across the forested ecoregions of Canada at an annual time-step. From 1985 to 2015, 51 Mha burned, impacting over 6.5% of forested ecosystems. Mean annual area burned was 1,651,818 ha and varied markedly (σ = 1,116,119), with 25% of the total area burned occurring in three years: 1989, 1995, and 2015. Boreal forest types contained 98% of the total area burned, with the conifer-dominated Boreal Shield containing one-third of all burned area. While results confirm no significant national trend in burned area for the period of 1985 to 2015, a significant national increasing trend (α = 0.05) of 11% per year was evident for the past decade (2006 to 2015). Regionally, a significant increasing trend in total burned area from 1985 to 2015 was observed in the Montane Cordillera (2.4% increase per year), while the Taiga Plains and Taiga Shield West displayed significant increasing trends from 2006 to 2015 (26.1% and 12.7% increases per year, respectively). The Atlantic Maritime, which had the lowest burned area of all ecozones (0.01% burned per year), was the only ecozone to display a significant negative trend (2.4% decrease per year) from 1985 to 2015. Given the century-long fire return intervals in many of these ecozones, and large annual variability in burned area, short-term trends need to be interpreted with caution. Additional interpretive cautions are related to year used for trend initiation and the nature and extents of spatial regionalizations used for summarizing findings. The results of our analysis provide a baseline for monitoring future national and regional trends in burned area and offer spatially and temporally detailed insights to inform science, policy, and management.


Assuntos
Ecossistema , Monitoramento Ambiental/métodos , Incêndios , Florestas , Canadá , Incêndios/estatística & dados numéricos , Fatores de Tempo
8.
PLoS One ; 12(3): e0172669, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28328953

RESUMO

Lichens form a critical portion of barren ground caribou (Rangifer tarandus groenlandicus) diets, especially during winter months. Here, we assess lichen mat volume across five herd ranges in the Northwest Territories and Nunavut, Canada, using newly developed composite Landsat imagery. The lichen volume estimator (LVE) was adapted for use across 700 000 km2 of barren ground caribou habitat annually from 1984-2012. We subsequently assessed how LVE changed temporally throughout the time series for each pixel using Theil-Sen's slopes, and spatially by assessing whether slope values were centered in local clusters of similar values. Additionally, we assessed how LVE estimates resulted in changes in barren ground caribou movement rates using an extensive telemetry data set from 2006-2011. The Ahiak/Beverly herd had the largest overall increase in LVE (median = 0.033), while the more western herds had the least (median slopes below zero in all cases). LVE slope pixels were arranged in significant clusters across the study area, with the Cape Bathurst, Bathurst, and Bluenose East herds having the most significant clusters of negative slopes (more than 20% of vegetated land in each case). The Ahiak/Beverly and Bluenose West had the most significant positive clusters (16.3% and 18.5% of vegetated land respectively). Barren ground caribou displayed complex reactions to changing lichen conditions depending on season; the majority of detected associations with movement data agreed with current understanding of barren ground caribou foraging behavior (the exception was an increase in movement velocity at high lichen volume estimates in Fall). The temporal assessment of LVE identified areas where shifts in ecological conditions may have resulted in changing lichen mat conditions, while assessing the slope estimates for clustering identified zones beyond the pixel scale where forage conditions may be changing. Lichen volume estimates associated with barren ground caribou movement metrics in an expected manner and, as such, show value for future habitat assessments.


Assuntos
Líquens/crescimento & desenvolvimento , Rena/microbiologia , Rena/fisiologia , Animais , Ecossistema , Modelos Biológicos , Movimento/fisiologia , Territórios do Noroeste , Nunavut , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA