Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Cogn Affect Behav Neurosci ; 19(3): 459-476, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30341621

RESUMO

The ability to choose among options that differ in their rewards and costs (value-based decision making) has long been a topic of interest for neuroscientists, psychologists, and economists alike. This is likely because this is a cognitive process in which all animals (including humans) engage on a daily basis, be it routine (which road to take to work) or consequential (which graduate school to attend). Studies of value-based decision making (particularly at the preclinical level) often treat it as a uniform process. The results of such studies have been invaluable for our understanding of the brain substrates and neurochemical systems that contribute to decision making involving a range of different rewards and costs. Value-based decision making is not a unitary process, however, but is instead composed of distinct cognitive operations that function in concert to guide choice behavior. Within this conceptual framework, it is therefore important to consider that the known neural substrates supporting decision making may contribute to temporally distinct and dissociable components of the decision process. This review will describe this approach for investigating decision making, drawing from published studies that have used techniques that allow temporal dissection of the decision process, with an emphasis on the literature in animal models. The review will conclude with a discussion of the implications of this work for understanding pathological conditions that are characterized by impaired decision making.


Assuntos
Complexo Nuclear Basolateral da Amígdala/fisiologia , Corpo Estriado/fisiologia , Tomada de Decisões/fisiologia , Mesencéfalo/fisiologia , Modelos Animais , Córtex Pré-Frontal/fisiologia , Recompensa , Animais , Complexo Nuclear Basolateral da Amígdala/metabolismo , Corpo Estriado/metabolismo , Humanos , Mesencéfalo/metabolismo , Córtex Pré-Frontal/metabolismo , Roedores
2.
J Neurosci ; 37(48): 11537-11548, 2017 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-29079687

RESUMO

Decision making is a multifaceted process, consisting of several distinct phases that likely require different cognitive operations. Previous work showed that the basolateral amygdala (BLA) is a critical substrate for decision making involving risk of punishment; however, it is unclear how the BLA is recruited at different stages of the decision process. To this end, the current study used optogenetics to inhibit the BLA during specific task phases in a model of risky decision making (risky decision-making task) in which rats choose between a small, "safe" reward and a large reward accompanied by varying probabilities of footshock punishment. Male Long-Evans rats received intra-BLA microinjections of viral vectors carrying either halorhodopsin (eNpHR3.0-mCherry) or mCherry alone (control) followed by optic fiber implants and were trained in the risky decision-making task. Laser delivery during the task occurred during intertrial interval, deliberation, or reward outcome phases, the latter of which was further divided into the three possible outcomes (small, safe; large, unpunished; large, punished). Inhibition of the BLA selectively during the deliberation phase decreased choice of the large, risky outcome (decreased risky choice). In contrast, BLA inhibition selectively during delivery of the large, punished outcome increased risky choice. Inhibition had no effect during the other phases, nor did laser delivery affect performance in control rats. Collectively, these data indicate that the BLA can either inhibit or promote choice of risky options, depending on the phase of the decision process in which it is active.SIGNIFICANCE STATEMENT To date, most behavioral neuroscience research on neural mechanisms of decision making has used techniques that preclude assessment of distinct phases of the decision process. Here we show that optogenetic inhibition of the BLA has opposite effects on choice behavior in a rat model of risky decision making, depending on the phase in which inhibition occurs. BLA inhibition during a period of deliberation between small, safe and large, risky outcomes decreased risky choice. In contrast, BLA inhibition during receipt of the large, punished outcome increased risky choice. These findings highlight the importance of temporally targeted approaches to understand neural substrates underlying complex cognitive processes. More importantly, they reveal novel information about dynamic BLA modulation of risky choice.


Assuntos
Complexo Nuclear Basolateral da Amígdala/química , Complexo Nuclear Basolateral da Amígdala/fisiologia , Tomada de Decisões/fisiologia , Inibição Neural/fisiologia , Optogenética/métodos , Assunção de Riscos , Animais , Condicionamento Operante/fisiologia , Masculino , Ratos , Ratos Long-Evans , Fatores de Tempo
3.
Front Aging Neurosci ; 15: 1306496, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38259638

RESUMO

The glucocorticoid (GC) hypothesis posits that effects of stress and dysregulated hypothalamic-pituitary-adrenal axis activity accumulate over the lifespan and contribute to impairment of neural function and cognition in advanced aging. The validity of the GC hypothesis is bolstered by a wealth of studies that investigate aging of the hippocampus and decline of associated mnemonic functions. The prefrontal cortex (PFC) mediates working memory which also decreases with age. While the PFC is susceptible to stress and GCs, few studies have formally assessed the application of the GC hypothesis to PFC aging and working memory. Using parallel behavioral and molecular approaches, we compared the effects of normal aging versus chronic variable stress (CVS) on working memory and expression of genes that encode for effectors of glutamate and GABA signaling in male F344 rats. Using an operant delayed match-to-sample test of PFC-dependent working memory, we determined that normal aging and CVS each significantly impaired mnemonic accuracy and reduced the total number of completed trials. We then determined that normal aging increased expression of Slc6a11, which encodes for GAT-3 GABA transporter expressed by astrocytes, in the prelimbic (PrL) subregion of the PFC. CVS increased PrL expression of genes associated with glutamatergic synapses: Grin2b that encodes the GluN2B subunit of NMDA receptor, Grm4 that encodes for metabotropic glutamate receptor 4 (mGluR4), and Plcb1 that encodes for phospholipase C beta 1, an intracellular signaling enzyme that transduces signaling of Group I mGluRs. Beyond the identification of specific genes that were differentially expressed between the PrL in normal aging or CVS, examination of Log2 fold-changes for all expressed glutamate and GABA genes revealed a positive association between molecular phenotypes of aging and CVS in the PrL but no association in the infralimbic subregion. Consistent with predictions of the GC hypothesis, PFC-dependent working memory and PrL glutamate/GABA gene expression demonstrate comparable sensitivity to aging and chronic stress. However, changes in expression of specific genes affiliated with regulation of extracellular GABA in normal aging vs. genes encoding for effectors of glutamatergic signaling during CVS suggest the presence of unique manifestations of imbalanced inhibitory and excitatory signaling in the PFC.

4.
eNeuro ; 9(3)2022.
Artigo em Inglês | MEDLINE | ID: mdl-35998297

RESUMO

Fear-based disorders such as post-traumatic stress disorder (PTSD) steepen age-related cognitive decline and double the risk for developing Alzheimer's disease (AD). Because of the seemingly hyperactive properties of fear memories, PTSD symptoms can worsen with age. Perturbations in the synaptic circuitry supporting fear memory extinction are key neural substrates of PTSD. The basolateral amygdala (BLA) is a medial temporal lobe structure that is critical in the encoding, consolidation, and retrieval of fear memories. As little is known about fear extinction memory and BLA synaptic dysfunction within the context of aging and AD, the goal of this study was to investigate how fear extinction memory deficits and basal amygdaloid nucleus (BA) synaptic dysfunction differentially associate in nonpathologic aging and AD in the TgF344AD (TgAD) rat model of AD. Young, middle-aged, and older-aged WT and TgAD rats were trained on a delay fear conditioning and extinction procedure before ex vivo extracellular field potential recording experiments in the BA. Relative to young WT rats, long-term extinction memory was impaired, and in general, was associated with a hyperexcitable BA and impaired LTP in TgAD rats at all ages. In contrast, long-term extinction memory was impaired in aged WT rats and was associated with impaired LTP but not BA hyperexcitability. Interestingly, the middle-aged TgAD rats showed intact short-term extinction and BA LTP, which is suggestive of a compensatory mechanism, whereas differential neural recruitment in older-aged WT rats may have facilitated short-term extinction. As such, associations between fear extinction memory and amygdala deficits in nonpathologic aging and AD are dissociable.


Assuntos
Envelhecimento/fisiologia , Doença de Alzheimer/psicologia , Complexo Nuclear Basolateral da Amígdala/fisiologia , Extinção Psicológica/fisiologia , Medo/psicologia , Envelhecimento/psicologia , Doença de Alzheimer/etiologia , Tonsila do Cerebelo/fisiopatologia , Animais , Modelos Animais de Doenças , Ratos , Transtornos de Estresse Pós-Traumáticos/fisiopatologia , Transtornos de Estresse Pós-Traumáticos/psicologia
5.
Neuropharmacology ; 209: 109001, 2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-35189132

RESUMO

The ability to decide adaptively between immediate vs. delayed gratification (intertemporal choice) is critical for well-being and is associated with a range of factors that influence quality of life. In contrast to young adults, many older adults show enhanced preference for delayed gratification; however, the neural mechanisms underlying this age difference in intertemporal choice are largely un-studied. Changes in signaling through GABAB receptors (GABABRs) mediate several age-associated differences in cognitive processes linked to intertemporal choice. The current study used a rat model to determine how GABABRs in two brain regions known to regulate intertemporal choice (prelimbic cortex; PrL and basolateral amygdala; BLA) contribute to age differences in this form of decision making in male rats. As in humans, aged rats showed enhanced preference for large, delayed over small, immediate rewards during performance in an intertemporal choice task in operant test chambers. Activation of PrL GABABRs via microinfusion of the agonist baclofen increased choice of large, delayed rewards in young adult rats but did not influence choice in aged rats. Conversely, infusion of baclofen into the BLA strongly reduced choice of large, delayed rewards in both young adult and aged rats. Aged rats further showed a significant reduction in expression of GABABR1 subunit isoforms in the prefrontal cortex, a discovery that is consonant with the null effect of intra-PrL baclofen on intertemporal choice in aged rats. In contrast, expression of GABABR subunits was generally conserved with age in the BLA. Jointly, these findings elucidate a role for GABABRs in intertemporal choice and identify fundamental features of brain maturation and aging that mediate an improved ability to delay gratification.


Assuntos
Complexo Nuclear Basolateral da Amígdala , Desvalorização pelo Atraso , Animais , Baclofeno/farmacologia , Complexo Nuclear Basolateral da Amígdala/fisiologia , Comportamento de Escolha/fisiologia , Tomada de Decisões/fisiologia , Desvalorização pelo Atraso/fisiologia , Masculino , Qualidade de Vida , Ratos , Receptores de GABA-B , Recompensa
6.
J Gerontol A Biol Sci Med Sci ; 77(1): e10-e18, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34653247

RESUMO

While neurodegenerative diseases can strike at any age, the majority of afflicted individuals are diagnosed at older ages. Due to the important impact of age in disease diagnosis, the field of neuroscience could greatly benefit from the many of the theories and ideas from the biology of aging-now commonly referred as geroscience. As discussed in our complementary perspective on the topic, there is often a "silo-ing" between geroscientists who work on understanding the mechanisms underlying aging and neuroscientists who are studying neurodegenerative diseases. While there have been some strong collaborations between the biology of aging and neuroscientists, there is still great potential for enhanced collaborative effort between the 2 fields. To this end, here, we review the state of the geroscience field, discuss how neuroscience could benefit from thinking from a geroscience perspective, and close with a brief discussion on some of the "missing links" between geroscience and neuroscience and how to remedy them. Notably, we have a corresponding, concurrent review from the neuroscience perspective. Our overall goal is to "bridge the gap" between geroscience and neuroscience such that more efficient, reproducible research with translational potential can be conducted.


Assuntos
Envelhecimento , Gerociência , Humanos
7.
J Gerontol A Biol Sci Med Sci ; 77(1): e19-e33, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34623396

RESUMO

Neuroscience has a rich history of studies focusing on neurobiology of aging. However, much of the aging studies in neuroscience occur outside of the gerosciences. The goal of this primer is 2-fold: first, to briefly highlight some of the history of aging neurobiology and second, to introduce to geroscientists the broad spectrum of methodological approaches neuroscientists use to study the neurobiology of aging. This primer is accompanied by a corresponding geroscience primer, as well as a perspective on the current challenges and triumphs of the current divide across these 2 fields. This series of manuscripts is intended to foster enhanced collaborations between neuroscientists and geroscientists with the intent of strengthening the field of cognitive aging through inclusion of parameters from both areas of expertise.


Assuntos
Envelhecimento Cognitivo , Gerociência
8.
Neuropharmacology ; 197: 108720, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34273386

RESUMO

Ionotropic glutamate receptors of the NMDA and AMPA subtypes transduce excitatory signaling on neurons in the prefrontal cortex (PFC) in support of cognitive flexibility. Cognitive flexibility is reliably observed to decline at advanced ages, coinciding with changes in PFC glutamate receptor expression and neuronal physiology. However, the relationship between age-related impairment of cognitive flexibility and changes to excitatory signaling on distinct classes of PFC neurons is not known. In this study, one cohort of young adult (4 months) and aged (20 months) male F344 rats were characterized for cognitive flexibility on an operant set-shifting task. Expression of the essential NMDAR subunit, NR1, was correlated with individual differences in set-shifting abilities such that lower NR1 in the aged PFC was associated with worse set-shifting. In contrast, lower expression of two AMPAR subunits, GluR1 and GluR2, was not associated with set-shift abilities in aging. As NMDARs are expressed by both pyramidal cells and fast-spiking interneurons (FSI) in PFC, whole-cell patch clamp recordings were performed in a second cohort of age-matched rats to compare age-associated changes on these neuronal subtypes. Evoked excitatory postsynaptic currents were generated using a bipolar stimulator while AMPAR vs. NMDAR-mediated components were isolated using pharmacological tools. The results revealed a clear increase in AMPA/NMDA ratio in FSIs that was not present in pyramidal neurons. Together, these data indicate that loss of NMDARs on interneurons in PFC contributes to age-related impairment of cognitive flexibility.


Assuntos
Envelhecimento/fisiologia , Envelhecimento Cognitivo/fisiologia , Interneurônios/fisiologia , Córtex Pré-Frontal/crescimento & desenvolvimento , Córtex Pré-Frontal/fisiologia , Receptores de N-Metil-D-Aspartato/fisiologia , Animais , Condicionamento Operante , Potenciais Pós-Sinápticos Excitadores/fisiologia , Masculino , Técnicas de Patch-Clamp , Córtex Pré-Frontal/metabolismo , Desempenho Psicomotor/fisiologia , Células Piramidais/fisiologia , Ratos , Ratos Endogâmicos F344 , Receptores de AMPA/genética , Receptores de AMPA/fisiologia , Receptores de N-Metil-D-Aspartato/biossíntese
9.
J Psychopharmacol ; 35(7): 848-863, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33295231

RESUMO

BACKGROUND: Cannabis (marijuana) is the most widely used illicit drug in the USA, and consumption among adolescents is rising. Some animal studies show that adolescent exposure to delta 9-tetrahydrocannabinol or synthetic cannabinoid receptor 1 agonists causes alterations in affect and cognition that can persist into adulthood. It is less clear, however, whether similar alterations result from exposure to cannabis via smoke inhalation, which remains the most frequent route of administration in humans. AIMS: To begin to address these questions, a rat model was used to determine how cannabis smoke exposure during adolescence affects behavioral and cognitive outcomes in adulthood. METHODS: Adolescent male Long-Evans rats were assigned to clean air, placebo smoke, or cannabis smoke groups. Clean air or smoke exposure sessions were conducted daily during adolescence (from P29-P49 days of age ) for a total of 21 days, and behavioral testing began on P70. RESULTS: Compared to clean air and placebo smoke conditions, cannabis smoke significantly attenuated the normal developmental increase in body weight, but had no effects on several measures of either affect/motivation (open field activity, elevated plus maze, instrumental responding under a progressive ratio schedule of reinforcement) or cognition (set shifting, reversal learning, intertemporal choice). Surprisingly, however, in comparison to clean air controls rats exposed to either cannabis or placebo smoke in adolescence exhibited enhanced performance on a delayed response working memory task. CONCLUSIONS: These findings are consistent with a growing body of evidence for limited long-term adverse cognitive and affective consequences of adolescent exposure to relatively low levels of cannabinoids.


Assuntos
Comportamento Animal/efeitos dos fármacos , Função Executiva/efeitos dos fármacos , Fumar Maconha/efeitos adversos , Memória de Curto Prazo/efeitos dos fármacos , Fumaça/efeitos adversos , Fatores Etários , Animais , Modelos Animais de Doenças , Masculino , Ratos , Ratos Long-Evans
10.
Neuropsychopharmacology ; 46(3): 603-613, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32919406

RESUMO

Psychiatric diseases characterized by dysregulated risky decision making are differentially represented in males and females. The factors that govern such sex differences, however, remain poorly understood. Using a task in which rats make discrete trial choices between a small, "safe" food reward and a large food reward accompanied by varying probabilities of footshock punishment, we recently showed that females are more risk averse than males. The objective of the current experiments was to test the extent to which these sex differences in risky decision making are mediated by gonadal hormones. Male and female rats were trained in the risky decision-making task, followed by ovariectomy (OVX), orchiectomy (ORX), or sham surgery. Rats were then retested in the task, under both baseline conditions and following administration of estradiol and/or testosterone. OVX increased choice of the large, risky reward (increased risky choice), an effect that was attenuated by estradiol administration. In contrast, ORX decreased risky choice, but testosterone administration was without effect in either ORX or sham males. Estradiol, however, decreased risky choice in both groups of males. Importantly, none of the effects of hormonal manipulation on risky choice were due to altered shock sensitivity or food motivation. These data show that gonadal hormones are required for maintaining sex-typical profiles of risk-taking behavior in both males and females, and that estradiol is sufficient to promote risk aversion in both sexes. The findings provide novel information about the mechanisms supporting sex differences in risk taking and may prove useful in understanding sex differences in the prevalence of psychiatric diseases associated with altered risk taking.


Assuntos
Tomada de Decisões , Assunção de Riscos , Animais , Feminino , Masculino , Ratos , Ratos Long-Evans , Recompensa , Testosterona
11.
Elife ; 92020 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-32985975

RESUMO

Impairments in choosing optimally between immediate and delayed rewards are associated with numerous psychiatric disorders. Such 'intertemporal' choice is influenced by genetic and experiential factors; however, the contributions of biological sex are understudied and data to date are largely inconclusive. Rats were used to determine how sex and gonadal hormones influence choices between small, immediate and large, delayed rewards. Females showed markedly greater preference than males for small, immediate over large, delayed rewards (greater impulsive choice). This difference was neither due to differences in food motivation or reward magnitude perception, nor was it affected by estrous cycle. Ovariectomies did not affect choice in females, whereas orchiectomies increased impulsive choice in males. These data show that male rats exhibit less impulsive choice than females and that this difference is at least partly maintained by testicular hormones. These differences in impulsive choice could be linked to gender differences across multiple neuropsychiatric conditions.


Assuntos
Desvalorização pelo Atraso/efeitos dos fármacos , Comportamento Impulsivo/efeitos dos fármacos , Hormônios Testiculares/farmacologia , Animais , Comportamento Animal/efeitos dos fármacos , Feminino , Masculino , Ratos , Recompensa , Fatores Sexuais
12.
Front Aging Neurosci ; 11: 239, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31607897

RESUMO

As the number of individuals living beyond the age of 65 is rapidly increasing, so is the need to develop strategies to combat the age-related cognitive decline that may threaten independent living. Although the link between altered neuronal signaling and age-related cognitive impairments is not completely understood, it is evident that declining cognitive abilities are at least partially due to synaptic dysfunction. Aging is accompanied by well-documented changes in both excitatory and inhibitory synaptic signaling across species. Age-related synaptic alterations are not uniform across the brain, however, with different regions showing unique patterns of vulnerability in advanced age. In the hippocampus, increased activity within the CA3 subregion has been observed across species, and this can be reversed with anti-epileptic medication. In contrast to CA3, the dentate gyrus shows reduced activity with age and declining metabolic activity. Ketogenic diets have been shown to decrease seizure incidence and severity in epilepsy, improve metabolic function in diabetes type II, and improve cognitive function in aged rats. This link between neuronal activity and metabolism suggests that metabolic interventions may be able to ameliorate synaptic signaling deficits accompanying advanced age. We therefore investigated the ability of a dietary regimen capable of inducing nutritional ketosis and improving cognition to alter synapse-related gene expression across the dentate gyrus, CA3 and CA1 subregions of the hippocampus. Following 12 weeks of a ketogenic or calorie-matched standard diet, RTq-PCR was used to quantify expression levels of excitatory and inhibitory synaptic signaling genes within CA1, CA3 and dentate gyrus. While there were no age or diet-related changes in CA1 gene expression, expression levels were significantly altered within CA3 by age and within the dentate gyrus by diet for several genes involved in presynaptic glutamate regulation and postsynaptic excitation and plasticity. These data demonstrate subregion-specific alterations in synaptic signaling with age and the potential for a ketogenic diet to alter these processes in dissociable ways across different brain structures that are uniquely vulnerable in older animals.

13.
Elife ; 82019 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-31017572

RESUMO

Across species, aging is associated with an increased ability to choose delayed over immediate gratification. These experiments used young and aged rats to test the role of the basolateral amygdala (BLA) in intertemporal decision making. An optogenetic approach was used to inactivate the BLA in young and aged rats at discrete time points during choices between levers that yielded a small, immediate vs. a large, delayed food reward. BLA inactivation just prior to decisions attenuated impulsive choice in both young and aged rats. In contrast, inactivation during receipt of the small, immediate reward increased impulsive choice in young rats but had no effect in aged rats. BLA inactivation during the delay or intertrial interval had no effect at either age. These data demonstrate that the BLA plays multiple, temporally distinct roles during intertemporal choice, and show that the contribution of BLA to choice behavior changes across the lifespan.


Assuntos
Complexo Nuclear Basolateral da Amígdala/fisiologia , Comportamento Animal , Comportamento de Escolha , Tomada de Decisões , Fatores Etários , Animais , Optogenética , Ratos , Recompensa
14.
eNeuro ; 5(3)2018.
Artigo em Inglês | MEDLINE | ID: mdl-29971246

RESUMO

Glutamate signaling is essential for the persistent neural activity in prefrontal cortex (PFC) that enables working memory. Metabotropic glutamate receptors (mGluRs) are a diverse class of proteins that modulate excitatory neurotransmission via both presynaptic regulation of extracellular glutamate levels and postsynaptic modulation of ion channels on dendritic spines. This receptor class is of significant therapeutic interest for treatment of cognitive disorders associated with glutamate dysregulation. Working memory impairment and cortical hypoexcitability are both associated with advanced aging. Whether aging modifies PFC mGluR expression, and the extent to which any such alterations are regionally or subtype specific, however, is unknown. Moreover, it is unclear whether specific mGluRs in PFC are critical for working memory, and thus, whether altered mGluR expression in aging or disease is sufficient to play a causative role in working memory decline. Experiments in the current study first evaluated the effects of age on medial PFC (mPFC) mGluR expression using biochemical and molecular approaches in rats. Of the eight mGluRs examined, only mGluR5, mGluR3, and mGluR4 were significantly reduced in the aged PFC. The reductions in mGluR3 and mGluR5 (but not mGluR4) were observed in both mRNA and protein and were selectively localized to the prelimbic (PrL), but not infralimbic (IL), subregion of mPFC. Finally, pharmacological blockade of mGluR5 or mGluR2/3 using selective antagonists directed to PrL significantly impaired working memory without influencing non-mnemonic aspects of task performance. Together, these data implicate attenuated expression of PFC mGluR5 and mGluR3 in the impaired working memory associated with advanced ages.


Assuntos
Envelhecimento , Memória de Curto Prazo/fisiologia , Córtex Pré-Frontal/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Animais , Masculino , RNA Mensageiro/metabolismo , Ratos Endogâmicos F344 , Receptor de Glutamato Metabotrópico 5/metabolismo
15.
Front Aging Neurosci ; 10: 391, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30559660

RESUMO

Age-related cognitive decline has been linked to a diverse set of neurobiological mechanisms, including bidirectional changes in proteins critical for neuron function. Importantly, these alterations are not uniform across the brain. For example, the hippocampus (HPC) and prefrontal cortex (PFC) show distinct patterns of dysfunction in advanced age. Because higher cognitive functions require large-scale interactions across prefrontal cortical and hippocampal networks, selectively targeting an alteration within one region may not broadly restore function to improve cognition. One mechanism for decline that the PFC and HPC share, however, is a reduced ability to utilize glucose for energy metabolism. Although this suggests that therapeutic strategies bypassing the need for neuronal glycolysis may be beneficial for treating cognitive aging, this approach has not been empirically tested. Thus, the current study used a ketogenic diet (KD) as a global metabolic strategy for improving brain function in young and aged rats. After 12 weeks, rats were trained to perform a spatial alternation task through an asymmetrical maze, in which one arm was closed and the other was open. Both young and aged KD-fed rats showed resilience against the anxiogenic open arm, training to alternation criterion performance faster than control animals. Following alternation testing, rats were trained to perform a cognitive dual task that required working memory while simultaneously performing a bi-conditional association task (WM/BAT), which requires PFC-HPC interactions. All KD-fed rats also demonstrated improved performance on WM/BAT. At the completion of behavioral testing, tissue punches were collected from the PFC for biochemical analysis. KD-fed rats had biochemical alterations within PFC that were dissociable from previous results in the HPC. Specifically, MCT1 and MCT4, which transport ketone bodies, were significantly increased in KD-fed rats compared to controls. GLUT1, which transports glucose across the blood brain barrier, was decreased in KD-fed rats. Contrary to previous observations within the HPC, the vesicular glutamate transporter (VGLUT1) did not change with age or diet within the PFC. The vesicular GABA transporter (VGAT), however, was increased within PFC similar to HPC. These data suggest that KDs could be optimal for enhancing large-scale network function that is critical for higher cognition.

16.
J Gerontol A Biol Sci Med Sci ; 73(4): 450-458, 2018 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-29040389

RESUMO

Nutritional ketosis is induced by high fat/low carbohydrate dietary regimens, which produce high levels of circulating ketone bodies, shifting metabolism away from glucose utilization. While ketogenic diets (KD) were initially introduced to suppress seizures, they are garnering attention for their potential to treat a myriad of neurodegenerative and metabolic disorders that are associated with advanced age. The feasibility and physiological impact of implementing a long-term KD in old animals, however, has not been systematically examined. In this study, young and aged rats consumed a calorically- and nutritionally-matched KD or control diet for 12 weeks. All KD-fed rats maintained higher levels of BHB and lower levels of glucose relative to controls. However, it took the aged rats longer to reach asymptotic levels of BHB compared to young animals. Moreover, KD-fed rats had significantly less visceral white and brown adipose tissue than controls without a loss of lean mass. Interestingly, the KD led to significant alterations in protein levels of hippocampal transporters for monocarboxylates, glucose, and vesicular glutamate and gamma-aminobutyric acid. Most notably, the age-related decline in vesicular glutamate transporter expression was reversed by the KD. These data demonstrate the feasibility and potential benefits of KDs for treating age-associated neural dysfunction.


Assuntos
Adiposidade , Dieta Cetogênica , Hipocampo , Proteínas de Membrana Transportadoras , Animais , Ratos , Adiposidade/fisiologia , Fatores Etários , Glicemia/metabolismo , Western Blotting , Química Encefálica/fisiologia , Hipocampo/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Modelos Animais , Distribuição Aleatória , Ratos Endogâmicos F344
17.
Neurobiol Aging ; 60: 141-152, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28946018

RESUMO

Despite the fact that prefrontal cortex (PFC) function declines with age, aged individuals generally show an enhanced ability to delay gratification, as evident by less discounting of delayed rewards in intertemporal choice tasks. The present study was designed to evaluate relationships between 2 aspects of PFC-dependent cognition (working memory and cognitive flexibility) and intertemporal choice in young (6 months) and aged (24 months) Fischer 344 × brown Norway F1 hybrid rats. Rats were also evaluated for motivation to earn rewards using a progressive ratio task. As previously reported, aged rats showed attenuated discounting of delayed rewards, impaired working memory, and impaired cognitive flexibility compared with young. Among aged rats, greater choice of delayed reward was associated with preserved working memory, impaired cognitive flexibility, and less motivation to work for food. These relationships suggest that age-related changes in PFC and incentive motivation contribute to variance in intertemporal choice within the aged population. Cognitive impairments mediated by PFC are unlikely, however, to fully account for the enhanced ability to delay gratification that accompanies aging.


Assuntos
Envelhecimento/fisiologia , Envelhecimento/psicologia , Desvalorização pelo Atraso/fisiologia , Função Executiva/fisiologia , Córtex Pré-Frontal/fisiologia , Córtex Pré-Frontal/fisiopatologia , Ratos Endogâmicos F344/fisiologia , Ratos Endogâmicos F344/psicologia , Ratos/fisiologia , Ratos/psicologia , Animais , Quimera , Cognição/fisiologia , Memória/fisiologia , Motivação/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA