Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Open Res Eur ; 1: 20, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35253007

RESUMO

Background: Despite substantial research on early hominin lithic technologies, the learning mechanisms underlying flake manufacture and use are contested. To draw phylogenetic inferences on the potential cognitive processes underlying the acquisition of both of these abilities in early hominins, we investigated if and how one of our closest living relatives, chimpanzees ( Pan troglodytes), could learn to make and use flakes. Methods: Across several experimental conditions, we tested eleven task-naïve chimpanzees (unenculturated n=8, unknown status n=3) from two independent populations for their abilities to spontaneously make and subsequently use flakes as well as to use flakes made by a human experimenter. Results: Despite the fact that the chimpanzees seemed to understand the requirements of the task, were sufficiently motivated and had ample opportunities to develop the target behaviours, none of the chimpanzees tested made or used flakes in any of the experimental conditions. Conclusions: These results differ from all previous ape flaking experiments, which found flake manufacture and use in bonobos and one orangutan. However, these earlier studies tested human-enculturated apes and provided test subjects with flake making and using demonstrations. The contrast between these earlier positive findings and our negative findings (despite using a much larger sample size) suggests that enculturation and/or demonstrations may be necessary for chimpanzees to acquire these abilities. The data obtained in this study are consistent with the hypothesis that flake manufacture and use might have evolved in the hominin lineage after the split between Homo and Pan 7 million years ago, a scenario further supported by the initial lack of flaked stone tools in the archaeological record after this split. We discuss possible evolutionary scenarios for flake manufacture and use in both non-hominin and hominin lineages.

2.
Pathogens ; 9(7)2020 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-32664573

RESUMO

Different protozoa and metazoa have been detected in great apes, monkeys and humans with possible interspecies exchanges. Some are either nonpathogenic or their detrimental effects on the host are not yet known. Others lead to serious diseases that can even be fatal. Their survey remains of great importance for public health and animal conservation. Fecal samples from gorillas (Gorilla gorilla) and humans living in same area in the Republic of Congo, chimpanzees (Pan troglodytes) from Senegal and one other from the Republic of Congo, Guinea baboons (Papio papio) from Senegal, hamadryas baboons (Papio hamadryas) from Djibouti and Barbary macaques (Macaca sylvanus) from Algeria, were collected. DNA was extracted and screened using specific qPCR assays for the presence of a large number of helminths and protozoa. Positive samples were then amplified in standard PCRs and sequenced when possible. Overall, infection rate was 36.5% in all non-human primates (NHPs) and 31.6% in humans. Great apes were more often infected (63.6%) than monkeys (7.3%). At least twelve parasite species, including ten nematodes and two protozoa were discovered in NHPs and five species, including four nematodes and a protozoan in humans. The prevalences of Giarida lamblia, Necator americanus, Enterobius vermicularis, Strongyloides stercoralis were similar between gorillas and human community co-habiting the same forest ecosystem in the Republic of Congo. In addition, human specific Mansonella perstans (5.1%) and other Mansonella spp. (5.1%) detected in these gorillas suggest a possible cross-species exchange. Low prevalence (2%) of Ascaris lumbricoides, Enterobius vermicularis, Strongyloides stercoralis were observed in chimpanzees, as well as a high prevalence of Abbreviata caucasica (57.1%), which should be considered carefully as this parasite can affect other NHPs, animals and humans. The Barbary macaques were less infected (7.2%) and Oesophagostomum muntiacum was the main parasite detected (5.8%). Finally, we report the presence of Pelodera sp. and an environmental Nematoda DNAs in chimpanzee feces, Nematoda sp. and Bodo sp. in gorillas, as well as DNA of uncharacterized Nematoda in apes and humans, but with a relatively lower prevalence in humans. Prevalence of extraintestinal parasites remains underestimated since feces are not the suitable sampling methods. Using non-invasive sampling (feces) we provide important information on helminths and protozoa that can infect African NHPs and human communities living around them. Public health and animal conservation authorities need to be aware of these infections, as parasites detected in African NHPs could affect both human and other animals' health.

3.
Viruses ; 12(6)2020 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-32570742

RESUMO

Non-human primates (NHPs) are known hosts for adenoviruses (AdVs), so there is the possibility of the zoonotic or cross-species transmission of AdVs. As with humans, AdV infections in animals can cause diseases that range from asymptomatic to fatal. The aim of this study was to investigate the occurrence and diversity of AdVs in: (i) fecal samples of apes and monkeys from different African countries (Republic of Congo, Senegal, Djibouti and Algeria), (ii) stool of humans living near gorillas in the Republic of Congo, in order to explore the potential zoonotic risks. Samples were screened by real-time and standard PCRs, followed by the sequencing of the partial DNA polymerase gene in order to identify the AdV species. The prevalence was 3.3 folds higher in NHPs than in humans. More than 1/3 (35.8%) of the NHPs and 1/10 (10.5%) of the humans excreted AdVs in their feces. The positive rate was high in great apes (46%), with a maximum of 54.2% in chimpanzees (Pan troglodytes) and 35.9% in gorillas (Gorilla gorilla), followed by monkeys (25.6%), with 27.5% in Barbary macaques (Macaca sylvanus) and 23.1% in baboons (seven Papio papio and six Papio hamadryas). No green monkeys (Chlorocebus sabaeus) were found to be positive for AdVs. The AdVs detected in NHPs were members of Human mastadenovirus E (HAdV-E), HAdV-C or HAdV-B, and those in the humans belonged to HAdV-C or HAdV-D. HAdV-C members were detected in both gorillas and humans, with evidence of zoonotic transmission since phylogenetic analysis revealed that gorilla AdVs belonging to HAdV-C were genetically identical to strains detected in humans who had been living around gorillas, and, inversely, a HAdV-C member HAdV type was detected in gorillas. This confirms the gorilla-to-human transmission of adenovirus. which has been reported previously. In addition, HAdV-E members, the most often detected here, are widely distributed among NHP species regardless of their origin, i.e., HAdV-E members seem to lack host specificity. Virus isolation was successful from a human sample and the strain of the Mbo024 genome, of 35 kb, that was identified as belonging to HAdV-D, exhibited close identity to HAdV-D members for all genes. This study provides information on the AdVs that infect African NHPs and the human populations living nearby, with an evident zoonotic transmission. It is likely that AdVs crossed the species barrier between different NHP species (especially HAdV-E members), between NHPs and humans (especially HAdV-C), but also between humans, NHPs and other animal species.


Assuntos
Infecções por Adenoviridae/epidemiologia , Infecções por Adenoviridae/veterinária , Mastadenovirus/classificação , Mastadenovirus/isolamento & purificação , Infecções por Adenoviridae/transmissão , Argélia/epidemiologia , Animais , Chlorocebus aethiops/virologia , Congo/epidemiologia , DNA Viral/genética , DNA Polimerase Dirigida por DNA/genética , Djibuti/epidemiologia , Fezes/virologia , Gorilla gorilla/virologia , Humanos , Macaca/virologia , Mastadenovirus/genética , Pan troglodytes/virologia , Papio hamadryas/virologia , Papio papio/virologia , Senegal/epidemiologia , Zoonoses Virais/epidemiologia , Zoonoses Virais/transmissão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA