Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Front Cell Dev Biol ; 11: 1181040, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37397246

RESUMO

Myotonic dystrophy type 1 (DM1) is the most common form of muscular dystrophy in adults and affects mainly the skeletal muscle, heart, and brain. DM1 is caused by a CTG repeat expansion in the 3'UTR region of the DMPK gene that sequesters muscleblind-like proteins, blocking their splicing activity and forming nuclear RNA foci. Consequently, many genes have their splicing reversed to a fetal pattern. There is no treatment for DM1, but several approaches have been explored, including antisense oligonucleotides (ASOs) aiming to knock down DMPK expression or bind to the CTGs expansion. ASOs were shown to reduce RNA foci and restore the splicing pattern. However, ASOs have several limitations and although being safe treated DM1 patients did not demonstrate improvement in a human clinical trial. AAV-based gene therapies have the potential to overcome such limitations, providing longer and more stable expression of antisense sequences. In the present study, we designed different antisense sequences targeting exons 5 or 8 of DMPK and the CTG repeat tract aiming to knock down DMPK expression or promote steric hindrance, respectively. The antisense sequences were inserted in U7snRNAs, which were then vectorized in AAV8 particles. Patient-derived myoblasts treated with AAV8. U7snRNAs showed a significant reduction in the number of RNA foci and re-localization of muscle-blind protein. RNA-seq analysis revealed a global splicing correction in different patient-cell lines, without alteration in DMPK expression.

2.
Stem Cell Res ; 64: 102893, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35987120

RESUMO

Pulmonary atresia with intact ventricular septum (PA-IVS) is a rare congenital heart defect defined by membranous or muscular atresia of the right ventricular outflow tract where patients display varying degrees of hypoplasia of the right ventricle. This condition results in cyanosis due to an inability of blood to flow from the right ventricle to the pulmonary arteries, thus requiring immediate surgical intervention after birth. An iPSC line was generated from peripheral blood mononuclear cells of a 11-year-old male patient diagnosed with PA-IVS through Sendai virus-mediated reprogramming. This disease-specific iPSC line was characterized by immunocytochemistry, STR analysis, karyotype analysis, and mycoplasma testing.


Assuntos
Cardiopatias Congênitas , Células-Tronco Pluripotentes Induzidas , Atresia Pulmonar , Masculino , Humanos , Criança , Leucócitos Mononucleares , Atresia Pulmonar/cirurgia
3.
Stem Cell Res ; 64: 102892, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35987121

RESUMO

Hypoplastic left heart syndrome (HLHS) is a severe congenital heart defect characterized by underdeveloped structures on the left side of the heart, including hypoplasia of the left ventricle and stenosis or atresia of the aortic and mitral valves. Here, we generated an iPSC line from the peripheral blood mononuclear cells of a male patient with HLHS through Sendai virus-mediated transfection of 4 Yamanaka factors. This iPSC line exhibited normal morphology, expressed pluripotency markers, had a normal karyotype, and could differentiate into cells of three germ layers. This iPSC line can be used for studying cellular and developmental etiologies of HLHS.


Assuntos
Cardiopatias Congênitas , Síndrome do Coração Esquerdo Hipoplásico , Células-Tronco Pluripotentes Induzidas , Humanos , Masculino , Leucócitos Mononucleares , Ventrículos do Coração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA