Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 168
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Brain Topogr ; 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38689065

RESUMO

This review aims to demonstrate the connections between event-related potentials (ERPs), event-related oscillations (EROs), and non-invasive brain stimulation (NIBS), with a specific focus on transcranial alternating current stimulation (tACS). We begin with a short examination and discussion of the relation between ERPs and EROs. Then, we investigate the diverse fields of NIBS, highlighting tACS as a potent tool for modulating neural oscillations and influencing cognitive performance. Emphasizing the impact of tACS on individual ERP components, this article offers insights into the potential of conventional tACS for targeted stimulation of single ERP components. Furthermore, we review recent articles that explore a novel approach of tACS: ERP-aligned tACS. This innovative technique exploits the temporal precision of ERP components, aligning tACS with specific neural events to optimize stimulation effects and target the desired neural response. In conclusion, this review combines current knowledge to explore how ERPs, EROs, and NIBS interact, particularly highlighting the modulatory possibilities offered by tACS. The incorporation of ERP-aligned tACS introduces new opportunities for future research, advancing our understanding of the complex connection between neural oscillations and cognitive processes.

2.
J Neurosci ; 41(31): 6684-6698, 2021 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-34230106

RESUMO

Over the past decades, numerous studies have linked cortical gamma oscillations (∼30-100 Hz) to neurocomputational mechanisms. Their functional relevance, however, is still passionately debated. Here, we asked whether endogenous gamma oscillations in the human brain can be entrained by a rhythmic photic drive >50 Hz. Such a noninvasive modulation of endogenous brain rhythms would allow conclusions about their causal involvement in neurocognition. To this end, we systematically investigated oscillatory responses to a rapid sinusoidal flicker in the absence and presence of endogenous gamma oscillations using magnetoencephalography (MEG) in combination with a high-frequency projector. The photic drive produced a robust response over visual cortex to stimulation frequencies of up to 80 Hz. Strong, endogenous gamma oscillations were induced using moving grating stimuli as repeatedly done in previous research. When superimposing the flicker and the gratings, there was no evidence for phase or frequency entrainment of the endogenous gamma oscillations by the photic drive. Unexpectedly, we did not observe an amplification of the flicker response around participants' individual gamma frequencies (IGFs); rather, the magnitude of the response decreased monotonically with increasing frequency. Source reconstruction suggests that the flicker response and the gamma oscillations were produced by separate, coexistent generators in visual cortex. The presented findings challenge the notion that cortical gamma oscillations can be entrained by rhythmic visual stimulation. Instead, the mechanism generating endogenous gamma oscillations seems to be resilient to external perturbation.SIGNIFICANCE STATEMENT We aimed to investigate to what extent ongoing, high-frequency oscillations in the gamma-band (30-100 Hz) in the human brain can be entrained by a visual flicker. Gamma oscillations have long been suggested to coordinate neuronal firing and enable interregional communication. Our results demonstrate that rhythmic visual stimulation cannot hijack the dynamics of ongoing gamma oscillations; rather, the flicker response and the endogenous gamma oscillations coexist in different visual areas. Therefore, while a visual flicker evokes a strong neuronal response even at high frequencies in the gamma-band, it does not entrain endogenous gamma oscillations in visual cortex. This has important implications for interpreting studies investigating the causal and neuroprotective effects of rhythmic sensory stimulation in the gamma-band.


Assuntos
Ritmo Gama/fisiologia , Córtex Visual/fisiologia , Adulto , Relógios Biológicos/fisiologia , Mapeamento Encefálico/métodos , Feminino , Humanos , Magnetoencefalografia/métodos , Masculino , Estimulação Luminosa , Percepção Visual/fisiologia
3.
Neuroimage ; 264: 119713, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36309333

RESUMO

Non-invasive techniques to electrically stimulate the brain such as transcranial direct and alternating current stimulation (tDCS/tACS) are increasingly used in human neuroscience and offer potential new avenues to treat brain disorders. Previous research has shown that stimulation effects may depend on brain-states. However, this work mostly focused on experimentally induced brain-states over the course of several minutes. Besides such global, long-term changes in brain-states, previous research suggests, that the brain is likely to spontaneously alternate between states in sub-second ranges, which is much closer to the time scale at which it is generally believed to operate. Here, we utilized Hidden Markov Models (HMM) to decompose magnetoencephalography data obtained before and after tACS into spontaneous, transient brain-states with distinct spatial, spectral and connectivity profiles. Only one out of four spontaneous brain-states, likely reflecting default mode network activity, showed evidence for an effect of tACS on the power of spontaneous α-oscillations. The identified state appears to disproportionally drive the overall (non-state resolved) tACS effect. No or only marginal effects were found in the remaining states. We found no evidence that tACS influenced the time spent in each state. Although stimulation was applied continuously, our results indicate that spontaneous brain-states and their underlying functional networks differ in their susceptibility to tACS. Global stimulation aftereffects may be disproportionally driven by distinct time periods during which the susceptible state is active. Our results may pave the ground for future work to understand which features make a specific brain-state susceptible to electrical stimulation.


Assuntos
Encéfalo , Estimulação Transcraniana por Corrente Contínua , Humanos , Encéfalo/fisiologia , Magnetoencefalografia , Estimulação Transcraniana por Corrente Contínua/métodos , Estimulação Elétrica
4.
Eur J Neurosci ; 55(11-12): 3402-3417, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-33048382

RESUMO

A variety of perceptual phenomena suggest that, in contrast to our everyday experience, our perception may be discrete rather than continuous. The possibility of such discrete sampling processes inevitably prompts the question of how such discretization is implemented in the brain. Evidence from neurophysiological measurements suggest that neural oscillations, particularly in the lower frequencies, may provide a mechanism by which such discretization can be implemented. It is hypothesized that cortical excitability is rhythmically enhanced or reduced along the positive and negative half-cycle of such oscillations. In recent years, rhythmic non-invasive brain stimulation approaches such as rhythmic transcranial magnetic stimulation (rTMS) and transcranial alternating current stimulation (tACS) are increasingly used to test this hypothesis. Both methods are thought to entrain endogenous brain oscillations, allowing them to alter their power, frequency, and phase in order to study their roles in perception. After a brief introduction to the core mechanisms of both methods, we will provide an overview of rTMS and tACS studies probing the role of brain oscillations for discretized perception in different domains and will contrast these results with unsuccessful attempts. Further, we will discuss methodological pitfalls and challenges associated with the methods.


Assuntos
Estimulação Transcraniana por Corrente Contínua , Encéfalo/fisiologia , Percepção , Estimulação Transcraniana por Corrente Contínua/métodos
5.
Eur Arch Psychiatry Clin Neurosci ; 271(1): 135-156, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33211157

RESUMO

Transcranial alternating current stimulation (tACS) is a unique form of non-invasive brain stimulation. Sinusoidal alternating electric currents are delivered to the scalp to affect mostly cortical neurons. tACS is supposed to modulate brain function and, in turn, cognitive processes by entraining brain oscillations and inducing long-term synaptic plasticity. Therefore, tACS has been investigated in cognitive neuroscience, but only recently, it has been also introduced in psychiatric clinical trials. This review describes current concepts and first findings of applying tACS as a potential therapeutic tool in the field of psychiatry. The current understanding of its mechanisms of action is explained, bridging cellular neuronal activity and the brain network mechanism. Revisiting the relevance of altered brain oscillations found in six major psychiatric disorders, putative targets for the management of mental disorders using tACS are discussed. A systematic literature search on PubMed was conducted to report findings of the clinical studies applying tACS in patients with psychiatric conditions. In conclusion, the initial results may support the feasibility of tACS in clinical psychiatric populations without serious adverse events. Moreover, these results showed the ability of tACS to reset disturbed brain oscillations, and thus to improve behavioural outcomes. In addition to its potential therapeutic role, the reactivity of the brain circuits to tACS could serve as a possible tool to determine the diagnosis, classification or prognosis of psychiatric disorders. Future double-blind randomised controlled trials are necessary to answer currently unresolved questions. They may aim to detect response predictors and control for various confounding factors.


Assuntos
Encéfalo , Psiquiatria/métodos , Estimulação Transcraniana por Corrente Contínua , Encéfalo/citologia , Encéfalo/fisiologia , Humanos , Plasticidade Neuronal , Neurônios/fisiologia
6.
Neuroimage ; 205: 116304, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31654760

RESUMO

Research in cognitive neuroscience has extensively demonstrated that the temporal dynamics of brain activity are associated with cognitive functioning. The temporal dynamics mainly include oscillatory and 1/f noise-like, non-oscillatory brain activities that coexist in many forms of brain activity and confound each other's variability. As such, observed functional associations of narrowband oscillations might have been confounded with the broadband 1/f component. Here, we investigated the relationship between resting-state EEG activity and the efficiency of cognitive functioning in N = 180 individuals. We show that 1/f brain activity plays an essential role in accounting for between-person variability in cognitive speed - a relationship that can be mistaken as originating from brain oscillations using conventional power spectrum analysis. At first glance, the power of alpha oscillations appeared to be predictive of cognitive speed. However, when dissociating pure alpha oscillations from 1/f brain activity, only the 1/f predicted cognitive speed, whereas the predictive power of alpha vanished. With this highly powered study, we disambiguate the functional relevance of the 1/f power law pattern in resting state neural activities and substantiate the necessity of isolating the 1/f component from oscillatory activities when studying the functional relevance of spontaneous brain activities.


Assuntos
Ritmo alfa/fisiologia , Córtex Cerebral/fisiologia , Eletroencefalografia , Neuroimagem Funcional , Rede Nervosa/fisiologia , Reconhecimento Visual de Modelos/fisiologia , Desempenho Psicomotor/fisiologia , Tempo de Reação/fisiologia , Reconhecimento Psicológico/fisiologia , Adolescente , Adulto , Feminino , Humanos , Masculino , Adulto Jovem
7.
Eur J Neurosci ; 51(7): 1657-1675, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31408562

RESUMO

Self-motion perception is a key aspect of higher vestibular processing, suggested to rely upon hemispheric lateralization and alpha-band oscillations. The first aim of this study was to test for any lateralization in the EEG alpha band during the illusory sense of self-movement (vection) induced by large optic flow stimuli. Visual stimuli flickered at alpha frequency (approx. 10 Hz) in order to produce steady state visually evoked potentials (SSVEPs), a robust EEG measure which allows probing the frequency-specific response of the cortex. The first main result was that differential lateralization of the alpha SSVEP response was found during vection compared with a matched random motion control condition, supporting the idea of lateralization of visual-vestibular function. Additionally, this effect was frequency-specific, not evident with lower frequency SSVEPs. The second aim of this study was to test for a causal role of the right hemisphere in producing this lateralization effect and to explore the possibility of selectively modulating the SSVEP response. Transcranial alternating current stimulation (tACS) was applied over the right hemisphere simultaneously with SSVEP recording, using a novel artefact removal strategy for combined tACS-EEG. The second main result was that tACS enhanced SSVEP amplitudes, and the effect of tACS was not confined to the right hemisphere. Subsequent control experiments showed the effect of tACS requires the flicker frequency and tACS frequency to be closely matched and tACS to be of sufficient intensity. Combined tACS-SSVEPs are a promising method for future investigation into the role of neural oscillations and for optimizing tACS.


Assuntos
Potenciais Evocados Visuais , Ilusões , Estimulação Transcraniana por Corrente Contínua , Córtex Cerebral , Eletroencefalografia , Humanos
8.
J Neurosci ; 38(34): 7428-7439, 2018 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-30012685

RESUMO

Increased memory load is often signified by enhanced neural oscillatory power in the alpha range (8-13 Hz), which is taken to reflect inhibition of task-irrelevant brain regions. The corresponding neural correlates of memory decay, however, are not yet well understood. In the current study, we investigated auditory short-term memory decay in humans using a delayed matching-to-sample task with pure-tone sequences. First, in a behavioral experiment, we modeled memory performance over six different delay-phase durations. Second, in a MEG experiment, we assessed alpha-power modulations over three different delay-phase durations. In both experiments, the temporal expectation for the to-be-remembered sound was manipulated so that it was either temporally expected or not. In both studies, memory performance declined over time, but this decline was weaker when the onset time of the to-be-remembered sound was expected. Similarly, patterns of alpha power in and alpha-tuned connectivity between sensory cortices changed parametrically with delay duration (i.e., decrease in occipitoparietal regions, increase in temporal regions). Temporal expectation not only counteracted alpha-power decline in heteromodal brain areas (i.e., supramarginal gyrus), but also had a beneficial effect on memory decay, counteracting memory performance decline. Correspondingly, temporal expectation also boosted alpha connectivity within attention networks known to play an active role during memory maintenance. The present data show how patterns of alpha power orchestrate short-term memory decay and encourage a more nuanced perspective on alpha power across brain space and time beyond its inhibitory role.SIGNIFICANCE STATEMENT Our sensory memories of the physical world fade quickly. We show here that this decay of short-term memory can be counteracted by so-called temporal expectation; that is, knowledge of when to expect a sensory event that an individual must remember. We also show that neural oscillations in the "alpha" (8-13 Hz) range index both the degree of memory decay (for brief sound patterns) and the respective memory benefit from temporal expectation. Spatially distributed cortical patterns of alpha power show opposing effects in auditory versus visual sensory cortices. Moreover, alpha-tuned connectivity changes within supramodal attention networks reflect the allocation of neural resources as short-term memory representations fade.


Assuntos
Ritmo alfa/fisiologia , Antecipação Psicológica/fisiologia , Memória de Curto Prazo/fisiologia , Fatores de Tempo , Estimulação Acústica , Adulto , Atenção/fisiologia , Percepção Auditiva/fisiologia , Feminino , Humanos , Magnetoencefalografia , Masculino , Detecção de Sinal Psicológico , Adulto Jovem
9.
Brain Topogr ; 32(6): 1013-1019, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31520249

RESUMO

Transcranial alternating current stimulation (tACS) is increasingly used as a tool to non-invasively modulate brain oscillations in a frequency specific manner. A growing body of neuroscience research utilizes tACS to probe causal relationships between neuronal oscillations and cognitive processes or explore its capability of restoring dysfunctional brain oscillations implicated in various neurological and psychiatric disease. However, the underlying mechanisms of action are yet poorly understood. Due to a massive electromagnetic artifact, overlapping with the frequency of interest, direct insights to effects during stimulation from electrophysiological signals (i.e. EEG/MEG) are methodologically challenging. In the current review, we provide an overview of analysis approaches to recover brain signals in M/EEG during tACS, detailing their underlying concepts as well as limitations and methodological and interpretational pitfalls. While different analysis strategies can achieve strong attenuation of the tACS artifact in M/EEG signals, a compete removal of it is not feasible so far. However, we argue that with a combination of careful experimental designs, robust outcome measures and appropriate control analyses, valid and important insights to online effects of tACS can be revealed, enriching our understanding of its basic underlying mechanisms.


Assuntos
Encéfalo/fisiologia , Estimulação Transcraniana por Corrente Contínua/métodos , Artefatos , Eletroencefalografia , Humanos
10.
Neuroimage ; 172: 766-774, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29355765

RESUMO

Cortical entrainment of the auditory cortex to the broadband temporal envelope of a speech signal is crucial for speech comprehension. Entrainment results in phases of high and low neural excitability, which structure and decode the incoming speech signal. Entrainment to speech is strongest in the theta frequency range (4-8 Hz), the average frequency of the speech envelope. If a speech signal is degraded, entrainment to the speech envelope is weaker and speech intelligibility declines. Besides perceptually evoked cortical entrainment, transcranial alternating current stimulation (tACS) entrains neural oscillations by applying an electric signal to the brain. Accordingly, tACS-induced entrainment in auditory cortex has been shown to improve auditory perception. The aim of the current study was to modulate speech intelligibility externally by means of tACS such that the electric current corresponds to the envelope of the presented speech stream (i.e., envelope-tACS). Participants performed the Oldenburg sentence test with sentences presented in noise in combination with envelope-tACS. Critically, tACS was induced at time lags of 0-250 ms in 50-ms steps relative to sentence onset (auditory stimuli were simultaneous to or preceded tACS). We performed single-subject sinusoidal, linear, and quadratic fits to the sentence comprehension performance across the time lags. We could show that the sinusoidal fit described the modulation of sentence comprehension best. Importantly, the average frequency of the sinusoidal fit was 5.12 Hz, corresponding to the peaks of the amplitude spectrum of the stimulated envelopes. This finding was supported by a significant 5-Hz peak in the average power spectrum of individual performance time series. Altogether, envelope-tACS modulates intelligibility of speech in noise, presumably by enhancing and disrupting (time lag with in- or out-of-phase stimulation, respectively) cortical entrainment to the speech envelope in auditory cortex.


Assuntos
Córtex Auditivo/fisiologia , Compreensão/fisiologia , Percepção da Fala/fisiologia , Estimulação Transcraniana por Corrente Contínua , Estimulação Acústica , Adulto , Feminino , Humanos , Masculino , Adulto Jovem
11.
Neuroimage ; 173: 3-12, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29427848

RESUMO

Non-invasive brain stimulation to target specific network activity patterns, e.g. transcranial alternating current stimulation (tACS), has become an essential tool to understand the causal role of neuronal oscillations in cognition and behavior. However, conventional sinusoidal tACS limits the ability to record neuronal activity during stimulation and lacks spatial focality. One particularly promising new tACS stimulation paradigm uses amplitude-modulated (AM) high-frequency waveforms (AM-tACS) with a slow signal envelope that may overcome the limitations. Moreover. AM-tACS using high-frequency carrier signals is more tolerable than conventional tACS, e.g. in terms of skin irritation and occurrence of phosphenes, when applied at the same current intensities (e.g. 1-2 mA). Yet, the fundamental mechanism of neuronal target-engagement by AM-tACS waveforms has remained unknown. We used a computational model of cortex to investigate how AM-tACS modulates endogenous oscillations and compared the target engagement mechanism to the case of conventional (unmodulated) low-frequency tACS. Analysis of stimulation amplitude and frequency indicated that cortical oscillations were phase-locked to the envelope of the AM stimulation signal, which thus exhibits the same target engagement mechanism as conventional (unmodulated) low frequency tACS. However, in the computational model substantially higher current intensities were needed for AM-tACS than for low-frequency (unmodulated) tACS waveforms to achieve pronounced phase synchronization. Our analysis of the carrier frequency suggests that there might be a trade-off between the use of high-frequency carriers and the stimulation amplitude required for successful entrainment. Together, our computational simulations support the use of slow-envelope high frequency carrier AM waveforms as a tool for noninvasive modulation of brain oscillations. More empirical data will be needed to identify the optimal stimulation parameters and to evaluate tolerability and safety of both, AM- and conventional tACS.


Assuntos
Ritmo alfa/fisiologia , Córtex Cerebral/fisiologia , Simulação por Computador , Modelos Neurológicos , Estimulação Transcraniana por Corrente Contínua/métodos , Relógios Biológicos/fisiologia , Humanos
12.
Neuroimage ; 179: 134-143, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29860086

RESUMO

Amplitude modulated transcranial alternating current stimulation (AM-tACS) has been recently proposed as a possible solution to overcome the pronounced stimulation artifact encountered when recording brain activity during tACS. In theory, AM-tACS does not entail power at its modulating frequency, thus avoiding the problem of spectral overlap between brain signal of interest and stimulation artifact. However, the current study demonstrates how weak non-linear transfer characteristics inherent to stimulation and recording hardware can reintroduce spurious artifacts at the modulation frequency. The input-output transfer functions (TFs) of different stimulation setups were measured. Setups included recordings of signal-generator and stimulator outputs and M/EEG phantom measurements. 6th-degree polynomial regression models were fitted to model the input-output TFs of each setup. The resulting TF models were applied to digitally generated AM-tACS signals to predict the frequency of spurious artifacts in the spectrum. All four setups measured for the study exhibited low-frequency artifacts at the modulation frequency and its harmonics when recording AM-tACS. Fitted TF models showed non-linear contributions significantly different from zero (all p < .05) and successfully predicted the frequency of artifacts observed in AM-signal recordings. Results suggest that even weak non-linearities of stimulation and recording hardware can lead to spurious artifacts at the modulation frequency and its harmonics. These artifacts were substantially larger than alpha-oscillations of a human subject in the MEG. Findings emphasize the need for more linear stimulation devices for AM-tACS and careful analysis procedures, taking into account low-frequency artifacts to avoid confusion with effects of AM-tACS on the brain.


Assuntos
Algoritmos , Artefatos , Encéfalo/fisiologia , Estimulação Transcraniana por Corrente Contínua/métodos , Adulto , Eletroencefalografia , Humanos , Magnetoencefalografia , Masculino , Processamento de Sinais Assistido por Computador , Estimulação Transcraniana por Corrente Contínua/instrumentação
13.
J Neurosci ; 36(19): 5328-37, 2016 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-27170129

RESUMO

UNLABELLED: Rhythmic brain activity plays an important role in neural processing and behavior. Features of these oscillations, including amplitude, phase, and spectrum, can be influenced by internal states (e.g., shifts in arousal, attention or cognitive ability) or external stimulation. Electromagnetic stimulation techniques such as transcranial magnetic stimulation, transcranial direct current stimulation, and transcranial alternating current stimulation are used increasingly in both research and clinical settings. Currently, the mechanisms whereby time-dependent external stimuli influence population-scale oscillations remain poorly understood. Here, we provide computational insights regarding the mapping between periodic pulsatile stimulation parameters such as amplitude and frequency and the response dynamics of recurrent, nonlinear spiking neural networks. Using a cortical model built of excitatory and inhibitory neurons, we explored a wide range of stimulation intensities and frequencies systematically. Our results suggest that rhythmic stimulation can form the basis of a control paradigm in which one can manipulate the intrinsic oscillatory properties of driven networks via a plurality of input-driven mechanisms. Our results show that, in addition to resonance and entrainment, nonlinear acceleration is involved in shaping the rhythmic response of our modeled network. Such nonlinear acceleration of spontaneous and synchronous oscillatory activity in a neural network occurs in regimes of intense, high-frequency rhythmic stimulation. These results open new perspectives on the manipulation of synchronous neural activity for basic and clinical research. SIGNIFICANCE STATEMENT: Oscillatory activity is widely recognized as a core mechanism for information transmission within and between brain circuits. Noninvasive stimulation methods can shape this activity, something that is increasingly capitalized upon in basic research and clinical practice. Here, we provide computational insights on the mechanistic bases for such effects. Our results show that rhythmic stimulation forms the basis of a control paradigm in which one can manipulate the intrinsic oscillatory properties of driven networks via a plurality of input-driven mechanisms. In addition to resonance and entrainment, nonlinear acceleration is involved in shaping the rhythmic response of our modeled network, particularly in regimes of high-frequency rhythmic stimulation. These results open new perspectives on the manipulation of synchronous neural activity for basic and clinical research.


Assuntos
Potenciais de Ação , Encéfalo/fisiologia , Modelos Neurológicos , Periodicidade , Encéfalo/citologia , Estimulação Elétrica , Eletroencefalografia , Humanos , Neurônios/fisiologia , Potenciais Sinápticos
14.
Neuroimage ; 147: 960-963, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-27888060

RESUMO

Despite recent success in analyzing brain oscillations recorded during transcranial alternating current stimulation (tACS), the field still requires further research to establish standards in artifact removal methods. This includes taking a step back from the removal of the tACS artifact and thoroughly characterizing the to-be-removed artifact. A recent study by Noury et al. (2016) contributed importantly to this endeavour by showing the existence of nonlinear artefacts in the tACS signal as seen by MEG and EEG. Unfortunately however this paper conveys the message that current artifact removal attempts have failed altogether and that-based on these available tools-brain oscillations recorded during tACS cannot be analyzed using MEG and EEG. Here we want to balance this overly pessimistic conclusion: In-depth reanalyses of our own data and phantom-head measurements indicate that nonlinearities can occur, but only when technical limits of the stimulator are reached. As such they are part of the "real" stimulation and not a specific MEG analysis problem. Future tACS studies should consider these technical limits to avoid any nonlinear modulations of the tACS artifact. We conclude that even with current approaches, brain oscillations recorded during tACS can be meaningfully studied in many practical cases.


Assuntos
Artefatos , Encéfalo/fisiologia , Eletroencefalografia/normas , Magnetoencefalografia/normas , Estimulação Transcraniana por Corrente Contínua/normas , Eletroencefalografia/métodos , Humanos , Magnetoencefalografia/métodos , Estimulação Transcraniana por Corrente Contínua/métodos
15.
Hum Brain Mapp ; 38(3): 1333-1346, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27862666

RESUMO

The ability to inhibit behavior is crucial for adaptation in a fast changing environment and is commonly studied with the stop signal task. Current EEG research mainly focuses on the N200 and P300 ERPs and corresponding activity in the theta and delta frequency range, thereby leaving us with a limited understanding of the mechanisms of response inhibition. Here, 15 functional networks were estimated from time-frequency transformed EEG recorded during processing of a visual stop signal task. Cortical sources underlying these functional networks were reconstructed, and a total of 45 features, each representing spectrally and temporally coherent activity, were extracted to train a classifier to differentiate between go and stop trials. A classification accuracy of 85.55% for go and 83.85% for stop trials was achieved. Features capturing fronto-central delta- and theta activity, parieto-occipital alpha, fronto-central as well as right frontal beta activity were highly discriminating between trial-types. However, only a single network, comprising a feature defined by oscillatory activity below 12 Hz, was associated with a generator in the opercular region of the right inferior frontal cortex and showed the expected associations with behavioral inhibition performance. This study pioneers by providing a detailed ranking of neural features regarding their information content for stop and go differentiation at the single-trial level, and may further be the first to identify a scalp EEG marker of the inhibitory control network. This analysis allows for the characterization of the temporal dynamics of response inhibition by matching electrophysiological phenomena to cortical generators and behavioral inhibition performance. Hum Brain Mapp 38:1333-1346, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Mapeamento Encefálico , Córtex Cerebral/fisiologia , Potenciais Evocados/fisiologia , Inibição Psicológica , Tempo de Reação/fisiologia , Adulto , Eletroencefalografia , Feminino , Humanos , Masculino , Análise de Componente Principal , Análise Espectral , Máquina de Vetores de Suporte , Adulto Jovem
16.
PLoS Biol ; 12(12): e1002031, 2014 12.
Artigo em Inglês | MEDLINE | ID: mdl-25549264

RESUMO

Oscillatory neuronal synchronization between cortical areas has been suggested to constitute a flexible mechanism to coordinate information flow in the human cerebral cortex. However, it remains unclear whether synchronized neuronal activity merely represents an epiphenomenon or whether it is causally involved in the selective gating of information. Here, we combined bilateral high-density transcranial alternating current stimulation (HD-tACS) at 40 Hz with simultaneous electroencephalographic (EEG) recordings to study immediate electrophysiological effects during the selective entrainment of oscillatory gamma-band signatures. We found that interhemispheric functional connectivity was modulated in a predictable, phase-specific way: In-phase stimulation enhanced synchronization, anti-phase stimulation impaired functional coupling. Perceptual correlates of these connectivity changes were found in an ambiguous motion task, which strongly support the functional relevance of long-range neuronal coupling. Additionally, our results revealed a decrease in oscillatory alpha power in response to the entrainment of gamma band signatures. This finding provides causal evidence for the antagonistic role of alpha and gamma oscillations in the parieto-occipital cortex and confirms that the observed gamma band modulations were physiological in nature. Our results demonstrate that synchronized cortical network activity across several spatiotemporal scales is essential for conscious perception and cognition.


Assuntos
Cérebro/fisiologia , Percepção de Movimento/fisiologia , Rede Nervosa/fisiologia , Estimulação Transcraniana por Corrente Contínua , Adulto , Comportamento , Sincronização Cortical , Eletrodos , Feminino , Ritmo Gama/fisiologia , Humanos , Masculino , Estroboscopia
17.
Neuroimage ; 140: 118-25, 2016 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26458516

RESUMO

Many studies have proven transcranial alternating current stimulation (tACS) to manipulate brain activity. Until now it is not known, however, how these manipulations in brain activity are represented in brain metabolism or how spatially specific these changes are. Alpha-tACS has been shown to enhance the amplitude of the individual alpha frequency (IAF) and a negative correlation between alpha amplitude and occipital BOLD signal was reported in numerous EEG/fMRI experiments. Thus, alpha-tACS was chosen to test the effects of tACS on the BOLD signal. A reduction thereof was expected during alpha-tACS which shows the spatial extent of tACS effects beyond modeling studies. Three groups of subjects were measured in an MRI scanner, receiving tACS at either their IAF (N=11), 1Hz (control; N=12) or sham (i.e., no stimulation - a second control; N=11) while responding to a visual vigilance task. Stimulation was administered in an interleaved pattern of tACS-on runs and tACS-free baseline periods. The BOLD signal was analyzed in response to tACS-onset during resting state and in response to seldom target stimuli. Alpha-tACS at 1.0mA reduced the task-related BOLD response to visual targets in the occipital cortex as compared to tACS-free baseline periods. The deactivation was strongest in an area where the BOLD signal was shown to correlate negatively with alpha amplitude. A direct effect of tACS on resting state BOLD signal levels could not be shown. Our findings suggest that tACS-related changes in BOLD activity occur only as a modulation of an existing BOLD response.


Assuntos
Ritmo alfa/fisiologia , Córtex Cerebral/fisiologia , Imageamento por Ressonância Magnética/métodos , Oxigênio/metabolismo , Estimulação Transcraniana por Corrente Contínua/métodos , Córtex Visual/fisiologia , Percepção Visual/fisiologia , Adulto , Mapeamento Encefálico/métodos , Potenciais Evocados/fisiologia , Feminino , Humanos , Masculino , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
18.
Neuroimage ; 140: 76-82, 2016 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26608244

RESUMO

Cross-frequency coupling (CFC) has been suggested to constitute a highly flexible mechanism for cortical information gating and processing, giving rise to conscious perception and various higher cognitive functions in humans. In particular, it might provide an elegant tool for information integration across several spatiotemporal scales within nested or coupled neuronal networks. However, it is currently unknown whether low-frequency (theta/alpha) or high-frequency gamma oscillations orchestrate cross-frequency interactions, raising the question of who is master and who is slave. While correlative evidence suggested that at least two distinct CFC modes exist, namely, phase-amplitude-coupling (PAC) and amplitude-envelope correlations (AEC), it is currently unknown whether they subserve distinct cortical functions. Novel non-invasive brain stimulation tools, such as transcranial alternating current stimulation (tACS), now provide the unique opportunity to selectively entrain the low- or high-frequency component and study subsequent effects on CFC. Here, we demonstrate the differential modulation of CFC during selective entrainment of alpha or gamma oscillations. Our results reveal that entrainment of the low-frequency component increased PAC, where gamma power became preferentially locked to the trough of the alpha oscillation, while gamma-band entrainment enhanced AECs and reduced alpha power. These results provide causal evidence for the functional role of coupled alpha and gamma oscillations for visual processing.


Assuntos
Ritmo alfa/fisiologia , Córtex Cerebral/fisiologia , Sincronização Cortical/fisiologia , Ritmo Gama/fisiologia , Estimulação Transcraniana por Corrente Contínua/métodos , Mapeamento Encefálico/métodos , Feminino , Humanos , Masculino , Rede Nervosa/fisiologia , Vias Neurais/fisiologia , Adulto Jovem
19.
Neuropsychobiology ; 73(4): 191-200, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27225622

RESUMO

Modern psychopharmacological research in humans focuses on how specific psychoactive molecules modulate oscillatory brain activity. We present state-of-the-art EEG methods applied in a resting-state drug study. Thirty healthy male nonsmokers were randomly allocated either to a nicotine group (14 subjects, 7 mg transdermal nicotine) or a placebo group (16 subjects). EEG activity was recorded in eyes-open (EO) and eyes-closed (EC) conditions before and after drug administration. A source reconstruction (minimum norm algorithm) analysis was conducted within a frequency range of 8.5-18.4 Hz subdivided into three different frequency bands. During EO, nicotine reduced the power of oscillatory activity in the 12.5- to 18.4-Hz frequency band in the left middle frontal gyrus. In contrast, in the EC condition, nicotine reduced the power in the 8.5- to 10.4-Hz frequency band in the superior frontal gyri and in the 10.5- to 12.4-Hz and 12.5- to 18.4-Hz frequency bands in the supplementary motor areas. In summary, nicotine reduced the power of the 12.5- to 18.4-Hz band in the left middle frontal gyrus during EO, and it reduced power from 8.5 to 18.4 Hz in a brain area spanning from the superior frontal gyri to the supplementary motor areas during EC. In conclusion, the results suggest that nicotine counteracts the phenomenon of anteriorization of α activity, hence potentially increasing the level of vigilance.


Assuntos
Encéfalo/efeitos dos fármacos , Nicotina/farmacologia , Agonistas Nicotínicos/farmacologia , Adulto , Algoritmos , Mapeamento Encefálico , Eletroencefalografia , Humanos , Masculino , Descanso , Adulto Jovem
20.
Neuropsychobiology ; 74(1): 48-59, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27802427

RESUMO

We present an encephalography (EEG) connectivity study where 30 healthy male nonsmokers were randomly allocated either to a nicotine group (14 subjects, 7 mg of transdermal nicotine) or to a placebo group. EEG activity was recorded in an eyes-open (EO) and eyes-closed (EC) condition before and after drug administration. This is a reanalysis of a previous dataset. Through a source reconstruction procedure, we extracted 13 time series representing 13 sources belonging to a resting-state network. Here, we conducted connectivity analysis (renormalized partial directed coherence; rPDC) on sources, focusing on the frequency range of 8.5-18.4 Hz, subdivided into 3 frequency bands (α1, α2, and ß1) with the hypothesis that an increase in vigilance would modulate connectivity. Furthermore, a phase-amplitude coupling (mean resultant vector length; VL) analysis, was performed investigating whether an increase of vigilance would modulate phase-amplitude coupling. In the VL analysis we estimated the coupling of the phases of 3 low frequencies (α1, α2, and ß1), respectively, with the amplitude of high-frequency oscillations (30-40 Hz, low γ). With rPDC we found that during the EC condition, nicotine decreased feedback connectivity (from the precentral gyrus to precuneus, angular gyrus, cuneus and superior occipital gyrus) at 10.5-12.4 Hz. The VL analysis showed nicotine-induced increases in coupling at 10.5-18.4 Hz in the precuneus, cuneus and superior occipital gyrus during the EC condition. During the EO condition, no significant results were found in connectivity or phase-amplitude coupling measures at any frequency range. In conclusion, the results suggest that nicotine potentially increases the level of vigilance in the EC condition.


Assuntos
Encéfalo/efeitos dos fármacos , Nicotina/farmacologia , Agonistas Nicotínicos/farmacologia , Adulto , Mapeamento Encefálico , Eletroencefalografia , Humanos , Masculino , Vias Neurais/efeitos dos fármacos , Lobo Occipital/efeitos dos fármacos , Lobo Parietal/efeitos dos fármacos , Distribuição Aleatória , Descanso , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA