RESUMO
Mineralization disorders with a broad range of etiological factors represent a huge challenge in dental diagnosis and therapy. Hypophosphatasia (HPP) belongs to the rare diseases affecting predominantly mineralized tissues, bones and teeth, and occurs due to mutations in the ALPL gene, which encodes tissue-nonspecific alkaline phosphatase (TNAP). Here we analyzed stem cells from bone marrow (BMSCs), dental pulp (DPSCs) and periodontal ligament (PDLSCs) in the absence and presence of efficient TNAP inhibitors. The differentiation capacity, expression of surface markers, and gene expression patterns of donor-matched dental cells were compared during this in vitro study. Differentiation assays showed efficient osteogenic but low adipogenic differentiation (aD) capacity of PDLSCs and DPSCs. TNAP inhibitor treatment completely abolished the mineralization process during osteogenic differentiation (oD). RNA-seq analysis in PDLSCs, comparing oD with and without TNAP inhibitor levamisole, showed clustered regulation of candidate molecular mechanisms that putatively impaired osteogenesis and mineralization, disequilibrated ECM production and turnover, and propagated inflammation. Combined alteration of cementum formation, mineralization, and elastic attachment of teeth to cementum via elastic fibers may explain dental key problems in HPP. Using this in vitro model of TNAP deficiency in DPSCs and PDLSCs, we provide novel putative target areas for research on molecular cues for specific dental problems in HPP.
Assuntos
Biomarcadores/metabolismo , Polpa Dentária/patologia , Hipofosfatasia/complicações , Células-Tronco Mesenquimais/patologia , Ligamento Periodontal/patologia , Doenças Estomatognáticas/patologia , Adolescente , Adulto , Antirreumáticos/farmacologia , Estudos de Casos e Controles , Diferenciação Celular , Células Cultivadas , Polpa Dentária/efeitos dos fármacos , Polpa Dentária/metabolismo , Feminino , Humanos , Inflamação/etiologia , Inflamação/metabolismo , Inflamação/patologia , Levamisol/farmacologia , Masculino , Células-Tronco Mesenquimais/metabolismo , Osteogênese , Ligamento Periodontal/efeitos dos fármacos , Ligamento Periodontal/metabolismo , RNA-Seq , Doenças Estomatognáticas/etiologia , Doenças Estomatognáticas/metabolismo , Transcriptoma/efeitos dos fármacos , Adulto JovemRESUMO
Locoregional recurrence is a major reason for therapy failure after surgical resection of head and neck squamous cell carcinoma (HNSCC). The physiological process of postoperative wound healing could potentially support the proliferation of remaining tumor cells. The aim of this study was to evaluate the influence of wound fluid (WF) on the cell cycle distribution and a potential induction of epithelial-mesenchymal transition (EMT). To verify this hypothesis, we incubated FaDu and HLaC78 cells with postoperative WF from patients after neck dissection. Cell viability in dependence of WF concentration and cisplatin was measured by flow cytometry. Cell cycle analysis was performed by flow cytometry and EMT-marker expression by rtPCR. WF showed high concentrations of interleukin (IL)-6, IL-8, IL-10, CCL2, MCP-1, EGF, angiogenin, and leptin. The cultivation of tumor cells with WF resulted in a significant increase in cell proliferation without affecting the cell cycle. In addition, there was a significant enhancement of the mesenchymal markers Snail 2 and vimentin, while the expression of the epithelial marker E-cadherin was significantly decreased. After cisplatin treatment, tumor cells incubated with WF showed a significantly higher resistance compared with the control group. The effect of cisplatin-resistance was dependent on the WF concentration. In summary, proinflammatory cytokines are predominantly found in WF. Furthermore, the results suggest that EMT can be induced by WF, which could be a possible mechanism for cisplatin resistance.
Assuntos
Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Ferimentos e Lesões/patologia , Idoso , Idoso de 80 Anos ou mais , Líquidos Corporais/fisiologia , Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Citocinas/metabolismo , Resistencia a Medicamentos Antineoplásicos/fisiologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Feminino , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologiaRESUMO
In bone tissue engineering, the design of 3D systems capable of recreating composition, architecture and micromechanical environment of the native extracellular matrix (ECM) is still a challenge. While perfusion bioreactors have been proposed as potential tool to apply biomechanical stimuli, its use has been limited to a low number of biomaterials. In this work, we propose the culture of human mesenchymal stem cells (hMSC) in biomimetic mineralized recombinant collagen scaffolds with a perfusion bioreactor to simultaneously provide biochemical and biophysical cues guiding stem cell fate. The scaffolds were fabricated by mineralization of recombinant collagen in the presence of magnesium (RCP.MgAp). The organic matrix was homogeneously mineralized with apatite nanocrystals, similar in composition to those found in bone. X-Ray microtomography images revealed isotropic porous structure with optimum porosity for cell ingrowth. In fact, an optimal cell repopulation through the entire scaffolds was obtained after 1 day of dynamic seeding in the bioreactor. Remarkably, RCP.MgAp scaffolds exhibited higher cell viability and a clear trend of up-regulation of osteogenic genes than control (non-mineralized) scaffolds. Results demonstrate the potential of the combination of biomimetic mineralization of recombinant collagen in presence of magnesium and dynamic culture of hMSC as a promising strategy to closely mimic bone ECM.
Assuntos
Biomimética , Reatores Biológicos , Diferenciação Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células-Tronco Mesenquimais/citologia , Apatitas/química , Materiais Biocompatíveis/química , Células da Medula Óssea/citologia , Técnicas de Cultura de Células/instrumentação , Técnicas de Cultura de Células/métodos , Linhagem da Célula , Colágeno/química , Meios de Cultura , Matriz Extracelular/metabolismo , Humanos , Magnésio/química , Nanopartículas/química , Osteogênese , Perfusão , Porosidade , Espectroscopia de Infravermelho com Transformada de Fourier , Termogravimetria , Engenharia Tecidual/métodos , Alicerces Teciduais , Microtomografia por Raio-XRESUMO
BACKGROUND: While multiple in vitro studies examined mesenchymal stromal cells (MSCs) derived from bone marrow or hyaline cartilage, there is little to no data about the presence of MSCs in the joint capsule or the ligamentum capitis femoris (LCF) of the hip joint. Therefore, this in vitro study examined the presence and differentiation potential of MSCs isolated from the bone marrow, arthritic hyaline cartilage, the LCF and full-thickness samples of the anterior joint capsule of the hip joint. METHODS: MSCs were isolated and multiplied in adherent monolayer cell cultures. Osteogenesis and adipogenesis were induced in monolayer cell cultures for 21 days using a differentiation medium containing specific growth factors, while chondrogenesis in the presence of TGF-ß1 was performed using pellet-culture for 27 days. Control cultures were maintained for comparison over the same duration of time. The differentiation process was analyzed using histological and immunohistochemical stainings as well as semiquantitative RT-PCR for measuring the mean expression levels of tissue-specific genes. RESULTS: This in vitro research showed that the isolated cells from all four donor tissues grew plastic-adherent and showed similar adipogenic and osteogenic differentiation capacity as proven by the histological detection of lipid droplets or deposits of extracellular calcium and collagen type I. After 27 days of chondrogenesis proteoglycans accumulated in the differentiated MSC-pellets from all donor tissues. Immunohistochemical staining revealed vast amounts of collagen type II in all differentiated MSC-pellets, except for those from the LCF. Interestingly, all differentiated MSCs still showed a clear increase in mean expression of adipogenic, osteogenic and chondrogenic marker genes. In addition, the examination of an exemplary selected donor sample revealed that cells from all four donor tissues were clearly positive for the surface markers CD44, CD73, CD90 and CD105 by flow cytometric analysis. CONCLUSIONS: This study proved the presence of MSC-like cells in all four examined donor tissues of the hip joint. No significant differences were observed during osteogenic or adipogenic differentiation depending on the source of MSCs used. Further research is necessary to fully determine the tripotent differentiation potential of cells isolated from the LCF and capsule tissue of the hip joint.
Assuntos
Adipogenia/genética , Células da Medula Óssea/metabolismo , Cartilagem Hialina/patologia , Cápsula Articular/patologia , Células-Tronco Mesenquimais/metabolismo , Osteoartrite do Quadril/patologia , Ligamento da Cabeça do Fêmur/patologia , Adulto , Antígenos CD/metabolismo , Artroplastia de Quadril , Células Cultivadas , Condrogênese/genética , Feminino , Expressão Gênica , Humanos , Pessoa de Meia-Idade , Osteoartrite do Quadril/cirurgia , Osteogênese/genética , Doadores de TecidosRESUMO
(1) In vitro, bone marrow-derived stromal cells (BMSCs) demonstrate inter-donor phenotypic variability, which presents challenges for the development of regenerative therapies. Here, we investigated whether the frequency of putative BMSC sub-populations within the freshly isolated mononuclear cell fraction of bone marrow is phenotypically predictive for the in vitro derived stromal cell culture. (2) Vertebral body, iliac crest, and femoral head bone marrow were acquired from 33 patients (10 female and 23 male, age range 14-91). BMSC sub-populations were identified within freshly isolated mononuclear cell fractions based on cell-surface marker profiles. Stromal cells were expanded in monolayer on tissue culture plastic. Phenotypic assessment of in vitro derived cell cultures was performed by examining growth kinetics, chondrogenic, osteogenic, and adipogenic differentiation. (3) Gender, donor age, and anatomical site were neither predictive for the total yield nor the population doubling time of in vitro derived BMSC cultures. The abundance of freshly isolated progenitor sub-populations (CD45-CD34-CD73+, CD45-CD34-CD146+, NG2+CD146+) was not phenotypically predictive of derived stromal cell cultures in terms of growth kinetics nor plasticity. BMSCs derived from iliac crest and vertebral body bone marrow were more responsive to chondrogenic induction, forming superior cartilaginous tissue in vitro, compared to those isolated from femoral head. (4) The identification of discrete progenitor populations in bone marrow by current cell-surface marker profiling is not predictive for subsequently derived in vitro BMSC cultures. Overall, the iliac crest and the vertebral body offer a more reliable tissue source of stromal progenitor cells for cartilage repair strategies compared to femoral head.
Assuntos
Células da Medula Óssea/metabolismo , Imunofenotipagem , Células-Tronco Mesenquimais/metabolismo , Fenótipo , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores , Células da Medula Óssea/citologia , Diferenciação Celular , Linhagem da Célula , Proliferação de Células , Células Cultivadas , Feminino , Cabeça do Fêmur , Humanos , Ílio , Masculino , Células-Tronco Mesenquimais/citologia , Pessoa de Meia-Idade , Coluna Vertebral , Células-Tronco/citologia , Células-Tronco/metabolismo , Adulto JovemRESUMO
BACKGROUND: Platelet-rich plasma (PRP) refers to an enriched platelet suspension in plasma. In addition to the clinical application of PRP in the context of various orthopedic diseases and beyond, PRP and platelet lysate (PL) have been in focus in the field of tissue engineering. In this review, we discuss the application of PRP as a cell culture supplement and as part of tissue engineering strategies, particularly emphasizing current hurdles and ambiguities regarding the efficacy of PRP in these approaches. SUMMARY: As a putative autologous replacement for animal-derived supplements such as fetal calf serum (FCS), PRP has been applied as cell culture supplement for the expansion of stem and progenitor cells for tissue engineering applications and cell therapies. Attributed to the high content of growth factors in platelets, PRP has been shown to promote cell growth, which was mostly superior to standard cultures supplemented with FCS, while the differentiation capacity of progenitor cells seems not to be affected. However, it was also suggested that cultivation of cells with PRP significantly alters the protein expression profile in cells in comparison to FCS, indicating that the influence of PRP on cell behavior should be thoroughly investigated. Moreover, different PRP preparation methods and donor variations have to be considered for the use of PRP under good manufacturing practice conditions. PRP has been used for various tissue engineering applications in the context of bone, cartilage, skin, and soft tissue repair, where most studies were conducted in the field of bone tissue engineering. These approaches take either advantage of the release of chemoattractive, angiogenic, proliferative, and putatively pro-regenerative growth factors from PRP, and/or the hydrogel properties of activated PRP, making it suitable as a cell delivery vehicle. In many of these studies, PRP is combined with biomaterials, cells, and in some cases recombinant growth factors. Although the experimental design often does not allow conclusions on the pro-regenerative effect of PRP itself, most publications report beneficial effects if PRP is added to the tissue-engineered construct. Furthermore, it was demonstrated that the release of growth factors from PRP may be tailored and controlled when PRP is combined with materials able to capture growth factors. Key Messages: Platelet-derived preparations such as PRP and PL represent a promising source of autologous growth factors, which may be applied as cell culture supplement or to promote regeneration in tissue-engineered constructs. Furthermore, activated PRP is a promising candidate as an autologous cell carrier. However, the studies investigating PRP in these contexts often show conflicting results, which most likely can be attributed to the lack of standardized preparation methods, particularly with regard to the platelet content and donor variation of PRP. Ultimately, the use of PRP has to be tailored for the individual application.
Assuntos
Plasma Rico em Plaquetas , Engenharia Tecidual/métodos , Animais , Plaquetas/fisiologia , Técnicas de Cultura de Células , Meios de Cultura , HumanosRESUMO
Angiogenesis is a key factor in early stages of wound healing and is crucial for the repair of vascularized tissues such as the bone. However, supporting timely revascularization of the defect site still presents a clinical challenge. Tissue engineering approaches delivering endothelial cells or prevascularized constructs may overcome this problem. In the current study, we investigated platelet-rich plasma (PRP) gels as autologous, injectable cell delivery systems for prevascularized constructs. PRP was produced from human thrombocyte concentrates. GFP-expressing human umbilical vein endothelial cells (HUVECs) and human bone marrow-derived mesenchymal stem cells (MSCs) were encapsulated in PRP gels in different proportions. The formation of cellular networks was assessed over 14 days by time-lapse microscopy, gene expression analysis, and immunohistology. PRP gels presented a favorable environment for the formation of a three-dimensional (3D) cellular network. The formation of these networks was apparent as early as 3 days after seeding. Networks increased in complexity and branching over time but were only stable in HUVEC-MSC cocultures. The high cell viability together with the 3D capillary-like networks observed at early time points suggests that PRP can be used as an autologous and proangiogenic cell delivery system for the repair of vascularized tissues such as the bone.
Assuntos
Células Endoteliais da Veia Umbilical Humana/citologia , Células-Tronco Mesenquimais/citologia , Plasma Rico em Plaquetas/citologia , Sobrevivência Celular , Humanos , Neovascularização Fisiológica/fisiologia , Engenharia TecidualRESUMO
BACKGROUND AIMS: The diverse phenotypic changes and clinical and economic disadvantages associated with the monolayer expansion of bone marrow-derived mesenchymal stromal cells (MSCs) have focused attention on the development of one-step intraoperative cells therapies and homing strategies. The mononuclear cell fraction of bone marrow, inclusive of discrete stem cell populations, is not well characterized, and we currently lack suitable cell culture systems in which to culture and investigate the behavior of these cells. METHODS: Human bone marrow-derived mononuclear cells were cultured within fibrin for 2 weeks with or without fibroblast growth factor-2 supplementation. DNA content and cell viability of enzymatically retrieved cells were determined at days 7 and 14. Cell surface marker profiling and cell cycle analysis were performed by means of multi-color flow cytometry and a 5-ethynyl-2'-deoxyuridine incorporation assay, respectively. RESULTS: Total mononuclear cell fractions, isolated from whole human bone marrow, was successfully cultured in fibrin gels for up to 14 days under static conditions. Discrete niche cell populations including MSCs, pericytes and hematopoietic stem cells were maintained in relative quiescence for 7 days in proportions similar to that in freshly isolated cells. Colony-forming unit efficiency of enzymatically retrieved MSCs was significantly higher at day 14 compared to day 0; and in accordance with previously published works, it was fibroblast growth factor-2-dependant. CONCLUSIONS: Fibrin gels provide a simple, novel system in which to culture and study the complete fraction of bone marrow-derived mononuclear cells and may support the development of improved bone marrow cell-based therapies.
Assuntos
Células da Medula Óssea/citologia , Fibrina/metabolismo , Células-Tronco Hematopoéticas/citologia , Células-Tronco Mesenquimais/citologia , Monócitos/citologia , Técnicas de Cultura de Células , Separação Celular , Sobrevivência Celular , Células Cultivadas , Citometria de Fluxo , Humanos , Pericitos/citologiaRESUMO
RATIONALE: Fetuin-A is a liver-derived plasma protein involved in the regulation of calcified matrix metabolism. Biochemical studies showed that fetuin-A is essential for the formation of protein-mineral complexes, called calciprotein particles (CPPs). CPPs must be cleared from circulation to prevent local deposition and pathological calcification. OBJECTIVE: We studied CPP clearance in mice and in cell culture to identify the tissues, cells, and receptors involved in the clearance. METHODS AND RESULTS: In mice, fetuin-A-containing CPPs were rapidly cleared by the reticuloendothelial system, namely Kupffer cells of the liver and marginal zone macrophages of the spleen. Macrophages from scavenger receptor-AI/II (SR-A)-deficient mice cleared CPPs less efficiently than macrophages from wild-type mice, suggesting that SR-AI/II is involved in CPP binding and endocytosis. Accordingly, we found reduced clearance of CPPs in SR-A/MARCO-deficient mice. CONCLUSIONS: We could demonstrate that fetuin-A-containing CPPs facilitate the clearance of mineral debris by macrophages via SR-A. Since the same receptor also contributes to the uptake of modified low-density lipoprotein particles in atherosclerosis, defective endocytosis of both types of particle may impinge on lipid as well as mineral debris clearance in calcifying atherosclerosis.
Assuntos
Aterosclerose/metabolismo , Cálcio/sangue , Células de Kupffer/metabolismo , Macrófagos/metabolismo , Receptores Imunológicos/metabolismo , alfa-2-Glicoproteína-HS/metabolismo , Animais , Apolipoproteínas E/genética , Aterosclerose/patologia , Calcificação Fisiológica/fisiologia , Calcinose/metabolismo , Calcinose/patologia , Proteínas de Ligação ao Cálcio/metabolismo , Artérias Carótidas/citologia , Bovinos , Linhagem Celular , Endocitose/fisiologia , Células de Kupffer/citologia , Lipoproteínas LDL/metabolismo , Macrófagos/citologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Sistema Fagocitário Mononuclear/metabolismo , Fosfatos/sangue , Receptores Imunológicos/genética , Receptores Depuradores Classe A/genética , Receptores Depuradores Classe A/metabolismo , Baço/citologia , alfa-2-Glicoproteína-HS/genética , alfa-2-Glicoproteína-HS/farmacologiaRESUMO
Multiple myeloma (MM) clones reside in the bone marrow (BM), which plays a role in its survival and development. The interactions between MM and their neighboring mesenchymal stromal cells (MSCs) have been shown to promote MM growth and drug resistance. However, those interactions are often missing or misrepresented in traditional two-dimensional (2D) culture models. Application of novel three-dimensional (3D) models might recapitulate the BM niche more precisely, which will offer new insights into MM progression and survival. Here, we aimed to establish two 3D models, based on MSC spheroids and collagen droplets incorporating both MM cells and MSCs with the goal of replicating the native myeloma context of the BM niche. This approach revealed that although MSCs can spontaneously assemble spheroids with altered metabolic traits, MSC spheroid culture does not support the integration of MM cells. On the contrary, collagen-droplet culture supported the growth of both cell types. In collagen, MSC proliferation was reduced, with the correlating decrease in ATP production and Ki-67 expression, which might resemble in vivo conditions, rather than 2D abundance of nutrients and space. MSCs and MMs were distributed homogenously throughout the collagen droplet, with an apparent CXCL12 expression in MSCs. In addition, the response of MM cells to bortezomib was substantially reduced in collagen, indicating the importance of 3D culture in the investigation of myeloma cell behavior, as drug resistance is one of the most pertinent issues in cancer therapy.
Assuntos
Colágeno , Células-Tronco Mesenquimais , Mieloma Múltiplo , Esferoides Celulares , Mieloma Múltiplo/patologia , Mieloma Múltiplo/metabolismo , Humanos , Colágeno/metabolismo , Esferoides Celulares/metabolismo , Esferoides Celulares/patologia , Esferoides Celulares/citologia , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral , Modelos Biológicos , Técnicas de Cultura de Células/métodosRESUMO
Multiple myeloma involves early dissemination of malignant plasma cells across the bone marrow; however, the initial steps of dissemination remain unclear. Human bone marrow-derived mesenchymal stromal cells (hMSC) stimulate myeloma cell expansion (e.g., IL6) and simultaneously retain myeloma cells via chemokines (e.g., CXCL12) and adhesion factors. Hence, we hypothesized that the imbalance between cell division and retention drives dissemination. We present an in vitro model using primary hMSCs cocultured with INA-6 myeloma cells. Time-lapse microscopy revealed proliferation and attachment/detachment dynamics. Separation techniques (V-well adhesion assay and well plate sandwich centrifugation) were established to isolate MSC-interacting myeloma subpopulations that were characterized by RNA sequencing, cell viability, and apoptosis. Results were correlated with gene expression data (n = 837) and survival of patients with myeloma (n = 536). On dispersed hMSCs, INA-6 saturate hMSC surface before proliferating into large homotypic aggregates, from which single cells detached completely. On confluent hMSCs, aggregates were replaced by strong heterotypic hMSC-INA-6 interactions, which modulated apoptosis time dependently. Only INA-6 daughter cells (nMA-INA6) detached from hMSCs by cell division but sustained adherence to hMSC-adhering mother cells (MA-INA6). Isolated nMA-INA6 indicated hMSC autonomy through superior viability after IL6 withdrawal and upregulation of proliferation-related genes. MA-INA6 upregulated adhesion and retention factors (CXCL12), that, intriguingly, were highly expressed in myeloma samples from patients with longer overall and progression-free survival, but their expression decreased in relapsed myeloma samples. Altogether, in vitro dissemination of INA-6 is driven by detaching daughter cells after a cycle of hMSC-(re)attachment and proliferation, involving adhesion factors that represent a bone marrow-retentive phenotype with potential clinical relevance. SIGNIFICANCE: Novel methods describe in vitro dissemination of myeloma cells as detachment of daughter cells after cell division. Myeloma adhesion genes were identified that counteract in vitro detachment with potential clinical relevance.
Assuntos
Adesão Celular , Proliferação de Células , Células-Tronco Mesenquimais , Mieloma Múltiplo , Humanos , Mieloma Múltiplo/patologia , Mieloma Múltiplo/genética , Mieloma Múltiplo/metabolismo , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/patologia , Apoptose , Técnicas de Cocultura , Linhagem Celular Tumoral , Agregação Celular , Sobrevivência CelularRESUMO
The pro-inflammatory phase of bone healing, initiated by platelet activation and eventually hematoma formation, impacts bone marrow mesenchymal stromal cells (MSCs) in unknown ways. Here, we created platelet-rich plasma (PRP) hydrogels to study how platelet-derived factors modulate functional properties of encapsulated MSCs in comparison to a non-inflammatory fibrin (FBR) hydrogel environment. MSCs were isolated from human bone marrow, while PRP was collected from pooled apheresis thrombocyte concentrates and used for hydrogel preparation. After their encapsulation in hydrogels for 72 h, retrieved MSCs were analyzed for immunomodulatory activities, apoptosis, stem cell properties, senescence, CD9+, CD63+ and CD81+ extracellular vesicle (EV) release, and metabolism-related changes. PRP-hydrogels stimulated immunosuppressive functions of MSCs, along with their upregulated susceptibility to cell death in communication with PBMCs and augmented caspase 3/7 activity. We found impaired clonal growth and cell cycle progression, and more pronounced ß-galactosidase activity as well as accumulation of LC3-II-positive vacuoles in PRP-MSCs. Stimuli derived from PRP-hydrogels upregulated AKT and reduced mTOR phosphorylation in MSCs, which suggests an initiation of survival-related processes. Our results showed that PRP-hydrogels might represent a metabolically stressful environment, inducing acidification of MSCs, reducing polarization of the mitochondrial membrane and increasing lipid accumulation. These features were not detected in FBR-MSCs, which showed reduced CD63+ and CD81+ EV production and maintained clonogenicity. Our data revealed that PRP-derived hematoma components cause metabolic adaptation of MSCs followed by increased immune regulatory functions. For the first time, we showed that PRP stimuli represent a survival challenge and "apoptotic priming" that are detrimental for stem cell-like growth of MSCs and important for their therapeutic consideration.
Assuntos
Células-Tronco Mesenquimais , Humanos , HidrogéisRESUMO
Osteoporosis, or steroid-induced osteonecrosis of the hip, is accompanied by increased bone marrow adipogenesis. Such a disorder of adipogenic/osteogenic differentiation, affecting bone-marrow-derived mesenchymal stem cells (BMSCs), contributes to bone loss during aging. Here, we investigated the effects of extracellular vesicles (EVs) isolated from human (h)BMSCs during different stages of osteogenic differentiation on the osteogenic and adipogenic differentiation capacity of naïve (undifferentiated) hBMSCs. We observed that all EV groups increased viability and proliferation capacity and suppressed the apoptosis of naïve hBMSCs. In particular, EVs derived from hBMSCs at late-stage osteogenic differentiation promoted the osteogenic potential of naïve hBMSCs more effectively than EVs derived from naïve hBMSCs (naïve EVs), as indicated by the increased gene expression of COL1A1 and OPN. In contrast, the adipogenic differentiation capacity of naïve hBMSCs was inhibited by treatment with EVs from osteogenic differentiated hBMSCs. Proteomic analysis revealed that osteogenic EVs and naïve EVs contained distinct protein profiles, with pro-osteogenic and anti-adipogenic proteins encapsulated in osteogenic EVs. We speculate that osteogenic EVs could serve as an intercellular communication system between bone- and bone-marrow adipose tissue, for transporting osteogenic factors and thus favoring pro-osteogenic processes. Our data may support the theory of an endocrine circuit with the skeleton functioning as a ductless gland.
Assuntos
Vesículas Extracelulares , Osteogênese , Adipogenia , Diferenciação Celular , Humanos , ProteômicaRESUMO
Active vitamin D (1,25(OH)2D3) is known to exert direct anti-cancer actions on various malignant tissues through binding to the vitamin D receptor (VDR). These effects have been demonstrated in breast, prostate, renal and thyroid cancers, which all have a high propensity to metastasise to bone. In addition, there is evidence that vitamin D catabolism via 24-hydroxylase (CYP24A1) is altered in tumour cells, thus, reducing local active vitamin D levels in cancer cells. The aim of this study was to assess VDR and CYP24A1 expression in various types of bone metastases by using immunohistochemistry. Overall, a high total VDR protein expression was detected in 59% of cases (39/66). There was a non-significant trend of high-grade tumours towards the low nuclear VDR expression (p = 0.07). Notably, patients with further distant metastases had a reduced nuclear VDR expression (p = 0.03). Furthermore, a high CYP24A1 expression was detected in 59% (39/66) of bone metastases. There was a significant positive correlation between nuclear VDR and CYP24A1 expression (p = 0.001). Collectively, the VDR and CYP24A1 were widely expressed in a multitude of bone metastases, pointing to a potential role of vitamin D signalling in cancer progression. This is of high clinical relevance, as vitamin D deficiency is frequent in patients with bone metastases.
RESUMO
The fate and behavior of bone marrow mesenchymal stem/stromal cells (BM-MSC) is bidirectionally influenced by their microenvironment, the stem cell niche, where a magnitude of biochemical and physical cues communicate in an extremely orchestrated way. It is known that simplified 2D in vitro systems for BM-MSC culture do not represent their naïve physiological environment. Here, we developed four different 2D cell-based decellularized matrices (dECM) and a 3D decellularized human trabecular-bone scaffold (dBone) to evaluate BM-MSC behavior. The obtained cell-derived matrices provided a reliable tool for cell shape-based analyses of typical features associated with osteogenic differentiation at high-throughput level. On the other hand, exploratory proteomics analysis identified native bone-specific proteins selectively expressed in dBone but not in dECM models. Together with its architectural complexity, the physico-chemical properties of dBone triggered the upregulation of stemness associated genes and niche-related protein expression, proving in vitro conservation of the naïve features of BM-MSC.
RESUMO
Human mesenchymal stem cells (hMSC) are multipotent cells with the ability to differentiate into a range of different cell types, including fat, bone, cartilage or muscle. A pro-tumorigenic effect of hMSC has been previously reported as part of the tumor stroma. In addition, studies have previously revealed the influence of hematopoietic and lymphoid tumors on hMSC differentiation to support their own growth. However, this possible phenomenon has not been explored in solid malignancies. Therefore, the aim of the present study was to investigate the effects of head and neck squamous cell carcinoma (HNSCC) lines Cal27 and HLaC78 on the induction of osteogenic and adipogenic differentiation in hMSCs. Native hMSCs were co-cultured with Cal27 and HLaC78 cells for 3 weeks. Subsequently, hMSC differentiation was assessed using reverse transcription-PCR and using Oil Red O and von Kossa staining. Furthermore, the effects of differentiated hMSCs on Cal27 and HLaC78 were examined. For this purpose, hMSCs differentiated into the adipogenic (adipo-hMSC) and osteogenic (osteo-hMSC) lineages were co-cultured with Cal27 and HLaC78. Cell viability, cytokine secretion and activation of STAT3 signaling were measured by cell counting, dot blot assay (42 cytokines with focus on IL-6) and western blotting (STAT3, phosphorylated STAT3, ß-actin), respectively. Co-culturing hMSCs with Cal27 and HLaC78 cells resulted in both adipogenic and osteogenic differentiation. In addition, the viability of Cal27 and HLaC78 cells was found to be increased after co-cultivation with adipo-hMSCs, compared with that of cells co-cultured with osteo-hMSC. According to western blotting results, Cal27 cells incubated with adipo-hMSCs exhibited increased STAT3 activation, compared with that in cells co-cultured with native hMSCs and osteo-hMSCs. IL-6 concentration in the media of Cal27 and HLaC78 after co-cultivation with respectively incubation with conditioned media of hMSCs, adipo-hMSCs and osteo-hMSCs were also found to be increased compared with that in the media of Cal27 and HLaC78 cells incubated with DMEM. To conclude, HNSCC cell lines Cal27 and HLaC78 induced hMSC differentiation towards the adipogenic and osteogenic lineages in vitro. Furthermore, a proliferative effect of adipo-hMSCs on Cal27 and HLaC78 cells was revealed with STAT3 activation as a possible mechanism. These results warrant further investigation of the interaction between HNSCC cells and hMSCs, with focus on the mechanism underlying the differentiation of hMSCs.
RESUMO
Aseptic loosening of total hip and knee joint replacements is the most common indication for revision surgery after primary hip and knee arthroplasty. Research suggests that exposure and uptake of wear by mesenchymal stromal cells (MSC) and macrophages results in the secretion of proinflammatory cytokines and local osteolysis, but also impaired cell viability and regenerative capacity of MSC. Therefore, this in vitro study compared the regenerative and differentiation capacity of MSC derived from patients undergoing primary total hip arthroplasty (MSCprim) to MSC derived from patients undergoing revision surgery after aseptic loosening of total hip and knee joint implants (MSCrev). Regenerative capacity was examined by measuring the cumulative population doubling (CPD) in addition to the number of passages until cells stopped proliferating. Osteogenesis and adipogenesis in monolayer cultures were assessed using histological stainings. Furthermore, RT-PCR was performed to evaluate the relative expression of osteogenic and adipogenic marker genes as well as the expression of markers for a senescence-associated secretory phenotype (SASP). MSCrev possessed a limited regenerative capacity in comparison to MSCprim. Interestingly, MSCrev also showed an impaired osteogenic and adipogenic differentiation capacity compared to MSCprim and displayed a SASP early after isolation. Whether this is the cause or the consequence of the aseptic loosening of total joint implants remains unclear. Future research should focus on the identification of specific cell markers on MSCprim, which may influence complication rates such as aseptic loosening of total joint arthroplasty to further individualize and optimize total joint arthroplasty.
Assuntos
Artroplastia de Quadril , Células-Tronco Mesenquimais , Humanos , Falha de Prótese , Reoperação , Fenótipo Secretor Associado à SenescênciaRESUMO
BACKGROUND: Curcumin has anti-inflammatory effects and qualifies as a potential candidate for the treatment of osteoarthritis (OA). However, curcumin has limited bioavailability. Extracellular vesicles (EVs) are released by multiple cell types and act as molecule carrier during intercellular communication. We assume that EVs can maintain bioavailability and stability of curcumin after encapsulation. Here, we evaluated modulatory effects of curcumin-primed human (h)BMSC-derived EVs (Cur-EVs) on IL-1ß stimulated human osteoarthritic chondrocytes (OA-CH). METHODS: CellTiter-Blue Viability- (CTB), Caspase 3/7-, and live/dead assays were used to determine range of cytotoxic curcumin concentrations for hBMSC and OA-CH. Cur-EVs and control EVs were harvested from cell culture supernatants of hBMSC by ultracentrifugation. Western blotting (WB), transmission electron microscopy, and nanoparticle tracking analysis were performed to characterize the EVs. The intracellular incorporation of EVs derived from PHK26 labeled and curcumin-primed or control hBMSC was tested by adding the labeled EVs to OA-CH cultures. OA-CH were pre-stimulated with IL-1ß, followed by Cur-EV and control EV treatment for 24 h and subsequent analysis of viability, apoptosis, and migration (scratch assay). Relative expression of selected anabolic and catabolic genes was assessed with qRT-PCR. Furthermore, WB was performed to evaluate phosphorylation of Erk1/2, PI3K/Akt, and p38MAPK in OA-CH. The effect of hsa-miR-126-3p expression on IL-1ß-induced OA-CH was determined using CTB-, Caspase 3/7-, live/dead assays, and WB. RESULTS: Cur-EVs promoted viability and reduced apoptosis of IL-1ß-stimulated OA-CH and attenuated IL-1ß-induced inhibition of migration. Furthermore, Cur-EVs increased gene expression of BCL2, ACAN, SOX9, and COL2A1 and decreased gene expression of IL1B, IL6, MMP13, and COL10A1 in IL-1ß-stimulated OA-CH. In addition, phosphorylation of Erk1/2, PI3K/Akt, and p38 MAPK, induced by IL-1ß, is prevented by Cur-EVs. Cur-EVs increased IL-1ß-reduced expression of hsa-miR-126-3p and hsa-miR-126-3p mimic reversed the effects of IL-1ß. CONCLUSION: Cur-EVs alleviated IL-1ß-induced catabolic effects on OA-CH by promoting viability and migration, reducing apoptosis and phosphorylation of Erk1/2, PI3K/Akt, and p38 MAPK thereby modulating pro-inflammatory signaling pathways. Treatment of OA-CH with Cur-EVs is followed by upregulation of expression of hsa-miR-126-3p which is involved in modulation of anabolic response of OA-CH. EVs may be considered as promising drug delivery vehicles of curcumin helping to alleviate OA.
Assuntos
Curcumina , Vesículas Extracelulares , MicroRNAs , Osteoartrite , Condrócitos , Curcumina/farmacologia , Humanos , Interleucina-1beta/genética , MicroRNAs/genética , Osteoartrite/genética , Fosfatidilinositol 3-QuinasesRESUMO
In bone tissue engineering, the design of in vitro models able to recreate both the chemical composition, the structural architecture, and the overall mechanical environment of the native tissue is still often neglected. In this study, we apply a bioreactor system where human bone-marrow hMSCs are seeded in human femoral head-derived decellularized bone scaffolds and subjected to dynamic culture, i.e., shear stress induced by continuous cell culture medium perfusion at 1.7 mL/min flow rate and compressive stress by 10% uniaxial load at 1 Hz for 1 h per day. In silico modeling revealed that continuous medium flow generates a mean shear stress of 8.5 mPa sensed by hMSCs seeded on 3D bone scaffolds. Experimentally, both dynamic conditions improved cell repopulation within the scaffold and boosted ECM production compared with static controls. Early response of hMSCs to mechanical stimuli comprises evident cell shape changes and stronger integrin-mediated adhesion to the matrix. Stress-induced Col6 and SPP1 gene expression suggests an early hMSC commitment towards osteogenic lineage independent of Runx2 signaling. This study provides a foundation for exploring the early effects of external mechanical stimuli on hMSC behavior in a biologically meaningful in vitro environment, opening new opportunities to study bone development, remodeling, and pathologies.