Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 113(34): E4937-45, 2016 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-27503889

RESUMO

Using ab initio molecular dynamics as implemented in periodic, self-consistent (generalized gradient approximation Perdew-Burke-Ernzerhof) density functional theory, we investigated the mechanism of methanol electrooxidation on Pt(111). We investigated the role of water solvation and electrode potential on the energetics of the first proton transfer step, methanol electrooxidation to methoxy (CH3O) or hydroxymethyl (CH2OH). The results show that solvation weakens the adsorption of methoxy to uncharged Pt(111), whereas the binding energies of methanol and hydroxymethyl are not significantly affected. The free energies of activation for breaking the C-H and O-H bonds in methanol were calculated through a Blue Moon Ensemble using constrained ab initio molecular dynamics. Calculated barriers for these elementary steps on unsolvated, uncharged Pt(111) are similar to results for climbing-image nudged elastic band calculations from the literature. Water solvation reduces the barriers for both C-H and O-H bond activation steps with respect to their vapor-phase values, although the effect is more pronounced for C-H bond activation, due to less disruption of the hydrogen bond network. The calculated activation energy barriers show that breaking the C-H bond of methanol is more facile than the O-H bond on solvated negatively biased or uncharged Pt(111). However, with positive bias, O-H bond activation is enhanced, becoming slightly more facile than C-H bond activation.

2.
Nano Lett ; 14(6): 3570-6, 2014 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-24797061

RESUMO

An effective strategy for reducing the Pt content while retaining the activity of a Pt-based catalyst is to deposit the Pt atoms as ultrathin skins of only a few atomic layers thick on nanoscale substrates made of another metal. During deposition, however, the Pt atoms often take an island growth mode because of a strong bonding between Pt atoms. Here we report a versatile route to the conformal deposition of Pt as uniform, ultrathin shells on Pd nanocubes in a solution phase. The introduction of the Pt precursor at a relatively slow rate and high temperature allowed the deposited Pt atoms to spread across the entire surface of a Pd nanocube to generate a uniform shell. The thickness of the Pt shell could be controlled from one to six atomic layers by varying the amount of Pt precursor added into the system. Compared to a commercial Pt/C catalyst, the Pd@PtnL (n = 1-6) core-shell nanocubes showed enhancements in specific activity and durability toward the oxygen reduction reaction (ORR). Density functional theory (DFT) calculations on model (100) surfaces suggest that the enhancement in specific activity can be attributed to the weakening of OH binding through ligand and strain effects, which, in turn, increases the rate of OH hydrogenation. A volcano-type relationship between the ORR specific activity and the number of Pt atomic layers was derived, in good agreement with the experimental results. Both theoretical and experimental studies indicate that the ORR specific activity was maximized for the catalysts based on Pd@Pt2-3L nanocubes. Because of the reduction in Pt content used and the enhancement in specific activity, the Pd@Pt1L nanocubes showed a Pt mass activity with almost three-fold enhancement relative to the Pt/C catalyst.

3.
J Am Chem Soc ; 135(42): 15706-9, 2013 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-24106797

RESUMO

Controlling the shape and thus facets of metal nanocrystals is an effective way to enhance their performance in catalytic reactions. While Pd nanocrystals with a myriad of shapes have been successfully prepared with good uniformity and in high yield, Pd right bipyramids (RBPs) that have a singly twinned structure have been elusive. We report a facile route based on polyol reduction for the synthesis of Pd RBPs with purity >90% and sizes controlled in the range 5-15 nm. The success of our synthesis relies on the use of iodide ions to manipulate the strength of an oxidative etchant and selectively cap the Pd{100} facets. The as-prepared RBPs could serve as seeds to generate a set of Pd nanocrystals with novel shapes and structures. The RBPs also exhibited enhanced catalytic activity toward formic acid oxidation, with a current density 2.5 and 7.1 times higher than those of the single-crystal Pd nanocubes (which were also mainly covered by {100} facets) and commercial Pd black, respectively.


Assuntos
Formiatos/química , Compostos Organometálicos/química , Paládio/química , Catálise , Compostos Organometálicos/síntese química , Oxirredução , Tamanho da Partícula , Propriedades de Superfície
4.
Artigo em Inglês | MEDLINE | ID: mdl-38807974

RESUMO

The rise of adaptive stimulation approaches has shown great therapeutic promise in the growing field of neuromodulation. The discovery and growth of these novel adaptive stimulation paradigms has been largely concentrated around several implantable devices with research application programming interfaces (APIs) that allow for custom applications to be created for clinical neuromodulation studies. However, the sunsetting of devices and ongoing development of new platforms is leading to an increased fragmentation in the research environment- resulting in the reinvention of system features and the inability to leverage previous development efforts for future studies. The Open Mind Neuromodulation Interface (OMNI) is a previously proposed solution to address the weaknesses of the DLL-driven API approach of past neuromodulation research by utilizing an alternative gRPC-enabled microservice framework. Here, we introduce OMNI-BIC, an implementation of the OMNI framework to the CorTec Brain Interchange system. This paper describes the design and implementation of the OMNI-BIC software tools and demonstrates the framework's capabilities for implementing customized neuromodulation therapies for clinical investigations. Through the development and deployment of the OMNI-BIC system, we hope to improve future clinical studies with the Brain Interchange system and aid in continuing the growth and momentum of the exciting field of adaptive neuromodulation.

5.
J Neural Eng ; 20(1)2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36548993

RESUMO

Objective.Epilepsy is one of the most common neurological disorders and can have a devastating effect on a person's quality of life. As such, the search for markers which indicate an upcoming seizure is a critically important area of research which would allow either on-demand treatment or early warning for people suffering with these disorders. There is a growing body of work which uses machine learning methods to detect pre-seizure biomarkers from electroencephalography (EEG), however the high prediction rates published do not translate into the clinical setting. Our objective is to investigate a potential reason for this.Approach.We conduct an empirical study of a commonly used data labelling method for EEG seizure prediction which relies on labelling small windows of EEG data in temporal groups then selecting randomly from those windows to validate results. We investigate a confound for this approach for seizure prediction and demonstrate the ease at which it can be inadvertently learned by a machine learning system.Main results.We find that non-seizure signals can create decision surfaces for machine learning approaches which can result in false high prediction accuracy on validation datasets. We prove this by training an artificial neural network to learn fake seizures (fully decoupled from biology) in real EEG.Significance.The significance of our findings is that many existing works may be reporting results based on this confound and that future work should adhere to stricter requirements in mitigating this confound. The problematic, but commonly accepted approach in the literature for seizure prediction labelling is potentially preventing real advances in developing solutions for these sufferers. By adhering to the guidelines in this paper future work in machine learning seizure prediction is more likely to be clinically relevant.


Assuntos
Epilepsia , Qualidade de Vida , Humanos , Convulsões/diagnóstico , Epilepsia/diagnóstico , Aprendizado de Máquina , Eletroencefalografia/métodos
6.
J Vis Exp ; (197)2023 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-37522736

RESUMO

Adaptive deep brain stimulation (aDBS) shows promise for improving treatment for neurological disorders such as Parkinson's disease (PD). aDBS uses symptom-related biomarkers to adjust stimulation parameters in real-time to target symptoms more precisely. To enable these dynamic adjustments, parameters for an aDBS algorithm must be determined for each individual patient. This requires time-consuming manual tuning by clinical researchers, making it difficult to find an optimal configuration for a single patient or to scale to many patients. Furthermore, the long-term effectiveness of aDBS algorithms configured in-clinic while the patient is at home remains an open question. To implement this therapy at large scale, a methodology to automatically configure aDBS algorithm parameters while remotely monitoring therapy outcomes is needed. In this paper, we share a design for an at-home data collection platform to help the field address both issues. The platform is composed of an integrated hardware and software ecosystem that is open-source and allows for at-home collection of neural, inertial, and multi-camera video data. To ensure privacy for patient-identifiable data, the platform encrypts and transfers data through a virtual private network. The methods include time-aligning data streams and extracting pose estimates from video recordings. To demonstrate the use of this system, we deployed this platform to the home of an individual with PD and collected data during self-guided clinical tasks and periods of free behavior over the course of 1.5 years. Data were recorded at sub-therapeutic, therapeutic, and supra-therapeutic stimulation amplitudes to evaluate motor symptom severity under different therapeutic conditions. These time-aligned data show the platform is capable of synchronized at-home multi-modal data collection for therapeutic evaluation. This system architecture may be used to support automated aDBS research, to collect new datasets and to study the long-term effects of DBS therapy outside the clinic for those suffering from neurological disorders.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Humanos , Estimulação Encefálica Profunda/métodos , Ecossistema , Doença de Parkinson/terapia , Coleta de Dados , Gravação em Vídeo
7.
J Neural Eng ; 19(4)2022 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-35921806

RESUMO

Objective.Deep brain stimulation (DBS) programming for movement disorders requires systematic fine tuning of stimulation parameters to ameliorate tremor and other symptoms while avoiding side effects. DBS programming can be a time-consuming process and requires clinical expertise to assess response to DBS to optimize therapy for each patient. In this study, we describe and evaluate an automated, closed-loop, and patient-specific framework for DBS programming that measures tremor using a smartwatch and automatically changes DBS parameters based on the recommendations from a closed-loop optimization algorithm thus eliminating the need for an expert clinician.Approach.Bayesian optimization which is a sample-efficient global optimization method was used as the core of this DBS programming framework to adaptively learn each patient's response to DBS and suggest the next best settings to be evaluated. Input from a clinician was used initially to define a maximum safe amplitude, but we also implemented 'safe Bayesian optimization' to automatically discover tolerable exploration boundaries.Main results.We tested the system in 15 patients (nine with Parkinson's disease and six with essential tremor). Tremor suppression at best automated settings was statistically comparable to previously established clinical settings. The optimization algorithm converged after testing15.1±0.7settings when maximum safe exploration boundaries were predefined, and17.7±4.9when the algorithm itself determined safe exploration boundaries.Significance.We demonstrate that fully automated DBS programming framework for treatment of tremor is efficient and safe while providing outcomes comparable to that achieved by expert clinicians.


Assuntos
Estimulação Encefálica Profunda , Tremor Essencial , Doença de Parkinson , Teorema de Bayes , Estimulação Encefálica Profunda/métodos , Tremor Essencial/terapia , Humanos , Doença de Parkinson/terapia , Tremor/diagnóstico , Tremor/terapia
8.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 3105-3110, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-36086622

RESUMO

Virtual reality (VR) offers a robust platform for human behavioral neuroscience, granting unprecedented experimental control over every aspect of an immersive and interactive visual environment. VR experiments have already integrated non-invasive neural recording modalities such as EEG and functional MRI to explore the neural correlates of human behavior and cognition. Integration with implanted electrodes would enable significant increase in spatial and temporal resolution of recorded neural signals and the option of direct brain stimulation for neurofeedback. In this paper, we discuss the first such implementation of a VR platform with implanted electrocorticography (ECoG) and stereo-electroencephalography ( sEEG) electrodes in human, in-patient subjects. Noise analyses were performed to evaluate the effect of the VR headset on neural data collected in two VR-naive subjects, one child and one adult, including both ECOG and sEEG electrodes. Results demonstrate an increase in line noise power (57-63Hz) while wearing the VR headset that is mitigated effectively by common average referencing (CAR), and no significant change in the noise floor bandpower (125-240Hz). To our knowledge, this study represents first demonstrations of VR immersion during invasive neural recording with in-patient human subjects. Clinical Relevance- Immersive virtual reality tasks were well-tolerated and the quality of clinical neural signals preserved during VR immersion with two in-patient invasive neural recording subjects.


Assuntos
Eletrocorticografia , Realidade Virtual , Adulto , Criança , Eletrodos Implantados , Eletroencefalografia , Humanos , Imageamento por Ressonância Magnética
9.
Front Hum Neurosci ; 16: 1016379, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36337849

RESUMO

Bidirectional deep brain stimulation (DBS) platforms have enabled a surge in hours of recordings in naturalistic environments, allowing further insight into neurological and psychiatric disease states. However, high amplitude, high frequency stimulation generates artifacts that contaminate neural signals and hinder our ability to interpret the data. This is especially true in psychiatric disorders, for which high amplitude stimulation is commonly applied to deep brain structures where the native neural activity is miniscule in comparison. Here, we characterized artifact sources in recordings from a bidirectional DBS platform, the Medtronic Summit RC + S, with the goal of optimizing recording configurations to improve signal to noise ratio (SNR). Data were collected from three subjects in a clinical trial of DBS for obsessive-compulsive disorder. Stimulation was provided bilaterally to the ventral capsule/ventral striatum (VC/VS) using two independent implantable neurostimulators. We first manipulated DBS amplitude within safe limits (2-5.3 mA) to characterize the impact of stimulation artifacts on neural recordings. We found that high amplitude stimulation produces slew overflow, defined as exceeding the rate of change that the analog to digital converter can accurately measure. Overflow led to expanded spectral distortion of the stimulation artifact, with a six fold increase in the bandwidth of the 150.6 Hz stimulation artifact from 147-153 to 140-180 Hz. By increasing sense blank values during high amplitude stimulation, we reduced overflow by as much as 30% and improved artifact distortion, reducing the bandwidth from 140-180 Hz artifact to 147-153 Hz. We also identified artifacts that shifted in frequency through modulation of telemetry parameters. We found that telemetry ratio changes led to predictable shifts in the center-frequencies of the associated artifacts, allowing us to proactively shift the artifacts outside of our frequency range of interest. Overall, the artifact characterization methods and results described here enable increased data interpretability and unconstrained biomarker exploration using data collected from bidirectional DBS devices.

10.
Exp Neurol ; 351: 113977, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35016994

RESUMO

There is growing interest in using adaptive neuromodulation to provide a more personalized therapy experience that might improve patient outcomes. Current implant technology, however, can be limited in its adaptive algorithm capability. To enable exploration of adaptive algorithms with chronic implants, we designed and validated the 'Picostim DyNeuMo Mk-1' (DyNeuMo Mk-1 for short), a fully-implantable, adaptive research stimulator that titrates stimulation based on circadian rhythms (e.g. sleep, wake) and the patient's movement state (e.g. posture, activity, shock, free-fall). The design leverages off-the-shelf consumer technology that provides inertial sensing with low-power, high reliability, and relatively modest cost. The DyNeuMo Mk-1 system was designed, manufactured and verified using ISO 13485 design controls, including ISO 14971 risk management techniques to ensure patient safety, while enabling novel algorithms. The system was validated for an intended use case in movement disorders under an emergency-device authorization from the Medicines and Healthcare Products Regulatory Agency (MHRA). The algorithm configurability and expanded stimulation parameter space allows for a number of applications to be explored in both central and peripheral applications. Intended applications include adaptive stimulation for movement disorders, synchronizing stimulation with circadian patterns, and reacting to transient inertial events such as posture changes, general activity, and walking. With appropriate design controls in place, first-in-human research trials are now being prepared to explore the utility of automated motion-adaptive algorithms.


Assuntos
Encéfalo , Transtornos dos Movimentos , Algoritmos , Encéfalo/fisiologia , Cronoterapia , Humanos , Reprodutibilidade dos Testes
12.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 6659-6662, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34892635

RESUMO

Research with human intracranial electrodes has traditionally been constrained by the limitations of the inpatient clinical setting. Immersive virtual reality (VR), however, can transcend setting and enable novel task design with precise control over visual and auditory stimuli. This control over visual and auditory feedback makes VR an exciting platform for new in-patient, human electrocorticography (ECOG) and stereo-electroencephalography (sEEG) research. The integration of intracranial electrode recording and stimulation with VR task dynamics required foundational systems engineering. In this work, we present a custom API that bridges Unity, the leading VR game development engine, and Synapse, the proprietary software of the Tucker Davis Technologies (TDT) neural recording and stimulation platform. To demonstrate the functionality and efficiency of our API, we developed a closed-loop brain-computer interface (BCI) task in which filtered neural signals controlled the movement of a virtual object and virtual object dynamics triggered neural stimulation. This closed-loop VR-BCI task confirmed the utility, safety, and efficacy of our API and its readiness for human task deployment.


Assuntos
Realidade Virtual , Eletrodos , Eletroencefalografia , Humanos , Movimento , Software
13.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 6041-6044, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34892494

RESUMO

Adaptive deep brain stimulation (aDBS) promises a significant improvement in patient outcomes, compared to existing deep brain stimulation devices. Fully implanted systems represent the next step to the clinical adoption of aDBS. We take advantage of a unique longitudinal data set formed as part of an effort to investigate aDBS for essential tremor to verify the long term reliability of electrocorticography strips over the motor cortex as a source of bio-markers for control of adaptive stimulation. We show that beta band event related de-synchronization, a promising bio-marker for movement, is robust even when used to trigger aDBS. Over the course of several months we show a minor increase in beta band event related de-synchronization in patients with active deep brain stimulation confirming that it could be used in chronically implanted systems.Clinical relevance - We show the promise and practicality of cortical electrocorticography strips for use in fully implanted, clinically translatable, aDBS systems.


Assuntos
Estimulação Encefálica Profunda , Tremor Essencial , Doença de Parkinson , Eletrodos , Tremor Essencial/terapia , Humanos , Doença de Parkinson/terapia , Reprodutibilidade dos Testes
14.
Int IEEE EMBS Conf Neural Eng ; 2021: 959-962, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-35574294

RESUMO

Closed-loop deep brain stimulation is a novel form of therapy that has shown benefit in preliminary studies and may be clinically available in the near future. Initial closed-loop studies have primarily focused on responding to sensed biomarkers with adjustments to stimulation amplitude, which is often perceptible to study participants depending on the slew or "ramp" rate of the amplitude changes. These subjective responses to stimulation ramping can result in transient side effects, illustrating that ramp rate is a unique safety parameter for closed-loop neural systems. This presents a challenge to the future of closed-loop neuromodulation systems: depending on the goal of the control policy, clinicians will need to balance ramp rates to avoid side effects and keep the stimulation therapeutic by responding in time to affect neural dynamics. In this paper, we demonstrate the results of an initial investigation into methodology for finding safe and tolerable ramp rates in four people with Parkinson's disease (PD). Results suggest that optimal ramp rates were found more accurately during varying stimulation when compared to simply toggling between maximal and minimal intensity levels. Additionally, switching frequency instantaneously was tolerable at therapeutic levels of stimulation. Future work should focus on including optimization techniques to find ramp rates.

15.
Front Hum Neurosci ; 15: 590251, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33776665

RESUMO

Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is a clinically effective tool for treating medically refractory Parkinson's disease (PD), but its neural mechanisms remain debated. Previous work has demonstrated that STN DBS results in evoked potentials (EPs) in the primary motor cortex (M1), suggesting that modulation of cortical physiology may be involved in its therapeutic effects. Due to technical challenges presented by high-amplitude DBS artifacts, these EPs are often measured in response to low-frequency stimulation, which is generally ineffective at PD symptom management. This study aims to characterize STN-to-cortex EPs seen during clinically relevant high-frequency STN DBS for PD. Intraoperatively, we applied STN DBS to 6 PD patients while recording electrocorticography (ECoG) from an electrode strip over the ipsilateral central sulcus. Using recently published techniques, we removed large stimulation artifacts to enable quantification of STN-to-cortex EPs. Two cortical EPs were observed - one synchronized with DBS onset and persisting during ongoing stimulation, and one immediately following DBS offset, here termed the "start" and the "end" EPs respectively. The start EP is, to our knowledge, the first long-latency cortical EP reported during ongoing high-frequency DBS. The start and end EPs differ in magnitude (p < 0.05) and latency (p < 0.001), and the end, but not the start, EP magnitude has a significant relationship (p < 0.001, adjusted for random effects of subject) to ongoing high gamma (80-150 Hz) power during the EP. These contrasts may suggest mechanistic or circuit differences in EP production during the two time periods. This represents a potential framework for relating DBS clinical efficacy to the effects of a variety of stimulation parameters on EPs.

16.
Front Neurosci ; 15: 749705, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34955714

RESUMO

Deep Brain Stimulation (DBS) is an important tool in the treatment of pharmacologically resistant neurological movement disorders such as essential tremor (ET) and Parkinson's disease (PD). However, the open-loop design of current systems may be holding back the true potential of invasive neuromodulation. In the last decade we have seen an explosion of activity in the use of feedback to "close the loop" on neuromodulation in the form of adaptive DBS (aDBS) systems that can respond to the patient's therapeutic needs. In this paper we summarize the accomplishments of a 5-year study at the University of Washington in the use of neural feedback from an electrocorticography strip placed over the sensorimotor cortex. We document our progress from an initial proof of hardware all the way to a fully implanted adaptive stimulation system that leverages machine-learning approaches to simplify the programming process. In certain cases, our systems out-performed current open-loop approaches in both power consumption and symptom suppression. Throughout this effort, we collaborated with neuroethicists to capture patient experiences and take them into account whilst developing ethical aDBS approaches. Based on our results we identify several key areas for future work. "Graded" aDBS will allow the system to smoothly tune the stimulation level to symptom severity, and frequent automatic calibration of the algorithm will allow aDBS to adapt to the time-varying dynamics of the disease without additional input from a clinician. Additionally, robust computational models of the pathophysiology of ET will allow stimulation to be optimized to the nuances of an individual patient's symptoms. We also outline the unique advantages of using cortical electrodes for control and the remaining hardware limitations that need to be overcome to facilitate further development in this field. Over the course of this study we have verified the potential of fully-implanted, cortically driven aDBS as a feasibly translatable treatment for pharmacologically resistant ET.

17.
Front Neurol ; 12: 704170, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34393981

RESUMO

Epilepsy is one of the most common neurological disorders, and it affects almost 1% of the population worldwide. Many people living with epilepsy continue to have seizures despite anti-epileptic medication therapy, surgical treatments, and neuromodulation therapy. The unpredictability of seizures is one of the most disabling aspects of epilepsy. Furthermore, epilepsy is associated with sleep, cognitive, and psychiatric comorbidities, which significantly impact the quality of life. Seizure predictions could potentially be used to adjust neuromodulation therapy to prevent the onset of a seizure and empower patients to avoid sensitive activities during high-risk periods. Long-term objective data is needed to provide a clearer view of brain electrical activity and an objective measure of the efficacy of therapeutic measures for optimal epilepsy care. While neuromodulation devices offer the potential for acquiring long-term data, available devices provide very little information regarding brain activity and therapy effectiveness. Also, seizure diaries kept by patients or caregivers are subjective and have been shown to be unreliable, in particular for patients with memory-impairing seizures. This paper describes the design, architecture, and development of the Mayo Epilepsy Personal Assistant Device (EPAD). The EPAD has bi-directional connectivity to the implanted investigational Medtronic Summit RC+STM device to implement intracranial EEG and physiological monitoring, processing, and control of the overall system and wearable devices streaming physiological time-series signals. In order to mitigate risk and comply with regulatory requirements, we developed a Quality Management System (QMS) to define the development process of the EPAD system, including Risk Analysis, Verification, Validation, and protocol mitigations. Extensive verification and validation testing were performed on thirteen canines and benchtop systems. The system is now under a first-in-human trial as part of the US FDA Investigational Device Exemption given in 2018 to study modulated responsive and predictive stimulation using the Mayo EPAD system and investigational Medtronic Summit RC+STM in ten patients with non-resectable dominant or bilateral mesial temporal lobe epilepsy. The EPAD system coupled with an implanted device capable of EEG telemetry represents a next-generation solution to optimizing neuromodulation therapy.

18.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 629-632, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-33018066

RESUMO

Studying the neural correlates of sleep can lead to revelations in our understanding of sleep and its interplay with different neurological disorders. Sleep research relies on manual annotation of sleep stages based on rules developed for healthy adults. Automating sleep stage annotation can expedite sleep research and enable us to better understand atypical sleep patterns. Our goal was to create a fully unsupervised approach to label sleep and wake states in human electro-corticography (ECoG) data from epilepsy patients. Here, we demonstrate that with continuous data from a single ECoG electrode, hidden semi-Markov models (HSMM) perform best in classifying sleep/wake states without excessive transitions, with a mean accuracy (n=4) of 85.2% compared to using K-means clustering (72.2%) and hidden Markov models (81.5%). Our results confirm that HSMMs produce meaningful labels for ECoG data and establish the groundwork to apply this model to cluster sleep stages and potentially other behavioral states.


Assuntos
Eletrocorticografia , Vigília , Adulto , Humanos , Polissonografia , Sono , Fases do Sono
19.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 3612-3616, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-33018784

RESUMO

Impaired gait in Parkinson's disease is marked by slow, arrhythmic stepping, and often includes freezing of gait episodes where alternating stepping halts completely. Wearable inertial sensors offer a way to detect these gait changes and novel deep brain stimulation (DBS) systems can respond with clinical therapy in a real-time, closed-loop fashion. In this paper, we present two novel closed-loop DBS algorithms, one using gait arrhythmicity and one using a logistic-regression model of freezing of gait detection as control signals. Benchtop validation results demonstrate the feasibility of running these algorithms in conjunction with a closed-loop DBS system by responding to real-time human subject kinematic data and pre-recorded data from leg-worn inertial sensors from a participant with Parkinson's disease. We also present a novel control policy algorithm that changes neurostimulator frequency in response to the kinematic inputs. These results provide a foundation for further development, iteration, and testing in a clinical trial for the first closed-loop DBS algorithms using kinematic signals to therapeutically improve and understand the pathophysiological mechanisms of gait impairment in Parkinson's disease.


Assuntos
Estimulação Encefálica Profunda , Transtornos Neurológicos da Marcha , Doença de Parkinson , Fenômenos Biomecânicos , Marcha , Transtornos Neurológicos da Marcha/terapia , Humanos , Doença de Parkinson/terapia
20.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 3617-3620, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-33018785

RESUMO

Increased beta band synchrony has been demonstrated to be a biomarker of Parkinson's disease (PD). This abnormal synchrony can often be prolonged in long bursts of beta activity, which may interfere with normal sensorimotor processing. Previous closed loop deep brain stimulation (DBS) algorithms used averaged beta power to drive neurostimulation, which were indiscriminate to physiological (short) versus pathological (long) beta burst durations. We present a closed-loop DBS algorithm using beta burst duration as the control signal. Benchtop validation results demonstrate the feasibility of the algorithm in real-time by responding to pre-recorded STN data from a PD participant. These results provide the basis for future improved closed-loop algorithms focused on burst durations for in mitigating symptoms of PD.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Núcleo Subtalâmico , Humanos , Doença de Parkinson/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA