Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(24): e2218828120, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37276416

RESUMO

The foundations of today's societies are provided by manufactured capital accumulation driven by investment decisions through time. Reconceiving how the manufactured assets are harnessed in the production-consumption system is at the heart of the paradigm shifts necessary for long-term sustainability. Our research integrates 50 years of economic and environmental data to provide the global legacy environmental footprint (LEF) and unveil the historical material extractions, greenhouse gas emissions, and health impacts accrued in today's manufactured capital. We show that between 1995 and 2019, global LEF growth outpaced GDP and population growth, and the current high level of national capital stocks has been heavily relying on global supply chains in metals. The LEF shows a larger or growing gap between developed economies (DEs) and less-developed economies (LDEs) while economic returns from global asset supply chains disproportionately flow to DEs, resulting in a double burden for LDEs. Our results show that ensuring best practice in asset production while prioritizing well-being outcomes is essential in addressing global inequalities and protecting the environment. Achieving this requires a paradigm shift in sustainability science and policy, as well as in green finance decision-making, to move beyond the focus on the resource use and emissions of daily operations of the assets and instead take into account the long-term environmental footprints of capital accumulation.

2.
Environ Sci Technol ; 57(19): 7391-7400, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37146235

RESUMO

This study investigates how different technological and socioeconomic drivers have impacted the carbon footprint of primary metals. It analyzes the historical evidence from 1995 to 2018 using new metal production, energy use, and greenhouse gas (GHG) emission extensions made for the multiregional input-output model EXIOBASE. A combination of established input-output methods (index decomposition analysis, hypothetical extraction method, and footprint analysis) is used to dissect the drivers of the change in the upstream emissions occurring due to the production of metals demanded by other (downstream) economic activities. On a global level, GHG emissions from metal production have increased at a similar pace as the GDP but have decreased in high-income countries in the most recent 6 year period studied. This absolute decoupling in industrialized countries is mainly driven by reduced metal consumption intensity and improved energy efficiency. However, in emerging economies increasing metal consumption intensity and affluency have driven up emissions, more than offsetting any reductions due to improved energy efficiency.


Assuntos
Pegada de Carbono , Gases de Efeito Estufa , Metais/análise , Gases de Efeito Estufa/análise , Dióxido de Carbono/análise , Desenvolvimento Econômico , Carbono
3.
Environ Sci Technol ; 57(26): 9445-9458, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37339013

RESUMO

Urbanization, slum redevelopment, and population growth will lead to unprecedented levels of residential building construction in "low- and middle-income" (LMI) countries in the coming decades. However, less than 50% of previous residential building life-cycle assessment (LCA) reviews included LMI countries. Moreover, all reviews that included LMI countries only considered formal (cement-concrete) buildings, while more than 800 million people in these countries lived in informal settlements. We analyze LCA literature and define three building types based on durability: formal, semiformal, and informal. These exhaustively represent residential buildings in LMI countries. For each type, we define dominant archetypes from across the world, based on construction materials. To address the data deficiency and lack of transparency in LCA studies, we develop a reproducibility metric for building LCAs. We find that the countries with the most reproducible studies are India, Sri Lanka, Turkey, Mexico, and Brazil. Only 7 out of 54 African countries have reproducible studies focused on either the embodied or use phase. Maintenance, refurbishment, and end-of-life phases are included in hardly any studies in the LMI LCA literature. Lastly, we highlight the necessity for studying current, traditional buildings to provide a benchmark for future studies focusing on energy and material efficiency strategies.


Assuntos
Pegada de Carbono , Países em Desenvolvimento , Urbanização , Humanos , Carbono , Materiais de Construção , Reprodutibilidade dos Testes
4.
Environ Sci Technol ; 56(7): 4565-4577, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35302366

RESUMO

Material efficiency (ME) can support rapid climate change mitigation and circular economy. Here, we comprehensively assess the circularity of ME strategies for copper use in the U.S. housing services (including residential buildings and major household appliances) by integrating use-phase material and energy demand. Although the ME strategies of more intensive floor space use and extended lifetime of appliances and buildings reduce the primary copper demand, employing these strategies increases the commonly neglected use-phase share of total copper requirements during the century from 23-28 to 22-42%. Use-phase copper requirements for home improvements have remained larger than the demand gap (copper demand minus scrap availability) for much of the century, limiting copper circularity in the U.S. housing services. Further, use-phase energy consumption can negate the benefits of ME strategies. For instance, the lifetime extension of lower-efficiency refrigerators increases the copper use and net environmental impact by increased electricity use despite reductions from less production. This suggests a need for more attention to the use phase when assessing circularity, especially for products that are material and energy intensive during use. To avoid burden shifting, policymakers should consider the entire life cycle of products supporting services when pursuing circular economy goals.


Assuntos
Utensílios Domésticos , Habitação , Mudança Climática , Cobre , Meio Ambiente
5.
Environ Sci Technol ; 56(24): 18050-18059, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36455072

RESUMO

Roads play a key role in movements of goods and people but require large amounts of materials emitting greenhouse gases to be produced. This study assesses the global road material stock and the emissions associated with materials' production. Our bottom-up approach combines georeferenced paved road segments with road length statistics and archetypical geometric characteristics of roads. We estimate road material stock to be of 254 Gt. If we were to build these roads anew, raw material production would emit 8.4 GtCO2-eq. Per capita stocks range from 0.2 t/cap in Chad to 283 t/cap in Iceland, with a median of 20.6 t/cap. If the average per capita stock in Africa was to reach the current European level, 166 Gt of road materials, equivalent to the road material stock in North America and in East and South Asia, would be consumed. At the urban scale, road material stock increases with the urban area, population density, and GDP per capita, emphasizing the need for containing urban expansion. Our study highlights the challenges in estimating road material stock and serves as a basis for further research into infrastructure resource management.


Assuntos
Gases de Efeito Estufa , Humanos , África , Ásia Meridional , América do Norte
6.
Environ Sci Technol ; 55(1): 65-72, 2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33327721

RESUMO

With the expected rapid growth of renewable electricity generation, charging plug-in hybrid electric vehicles (PHEVs) from the grid promise ever higher reductions in CO2 emissions. Previous analyses have found that the share that PHEVs are driven in electric mode can differ substantially depending on region, battery size, and trip purpose. Here, we provide a first fleet-wide emissions mitigation potential of US-based PHEV drivers adopting high or low shares of electric driving. Specifically, we illustrate scenarios of different combinations of PHEV uptake, renewable electricity generation shares, and PHEV fueling behavior. Across 21 analyzed scenarios, annual greenhouse gas (GHG) emissions of the light-duty vehicle (LDV) fleet could differ by an average of 21% (5-43% range) in 2050 depending alone on the fueling behavior of PHEV drivers. This behavior could further determine the discharge of about 1.3 (0.7-1.9) Gt CO2 (or roughly one year of current emissions) over the next three decades, significantly influencing the feasibility of reaching an 80% emission reduction target for the LDV sector. Governments can nudge PHEV drivers toward environmentally favorable fueling behavior. We discuss several options for nudging, including charging infrastructure availability, battery design, and consumer education.


Assuntos
Condução de Veículo , Gases de Efeito Estufa , Fontes de Energia Elétrica , Eletricidade , Veículos Automotores , Emissões de Veículos/análise
7.
Environ Sci Technol ; 55(4): 2224-2233, 2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33508933

RESUMO

Residential energy demand can be greatly influenced by the types of housing structures that households live in, but few studies have assessed changes in the composition of housing stocks as a strategy for reducing residential energy demand or greenhouse gas (GHG) emissions. In this paper we examine the effects of three sequenced federal policies on the share of new housing construction by type in the U.S., and estimate the cumulative influence of those policies on the composition of the 2015 housing stock. In a counterfactual 2015 housing stock without the policy effects, 14 million housing units exist as multifamily rather than single-family, equal to 14.1% of urban housing. Accompanied by floor area reductions of 0-50%, the switch from single- to multifamily housing reduces energy demand by 27-47% per household, and total urban residential energy by 4.6-8.3%. This paper is the first to link federal policies to housing outcomes by type and estimate associated effects on residential energy and GHG emissions. Removing policy barriers and disincentives to multifamily housing can unlock a large potential for reducing residential energy demand and GHG emissions in the coming decades.


Assuntos
Gases de Efeito Estufa , Habitação , Efeito Estufa , Políticas , Estados Unidos
8.
Environ Sci Technol ; 55(8): 5485-5495, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33783185

RESUMO

Is recycling a means for meeting the increasing copper demand in the face of declining ore grades? To date, research to address this question has generally focused on the quantity, not the quality of copper scrap. Here, the waste input-output impact assessment (WIO-IA) model integrates information on United States (US) economy-wide material flow, various recycling indicators, and the impact of material production from diverse sources to represent the quantity and quality of copper flows throughout the lifecycle. This approach enables assessment of recycling performance against environmental impact indicators. If all potentially recyclable copper scrap was recycled, energy consumption associated with copper production would decrease by 15% with alloy scrap as the largest contributor. Further energy benefits from increased recycling are limited by the lower quality of the scrap yet to be recycled. Improving the yield ratio of final products and the grade of diverse consumer product scrap could help increase copper circularity and decrease energy consumption. Policy makers should address the importance of a portfolio of material efficiency strategies like improved utilization of copper products and lifetime extension in addition to encouraging the demand for recycled copper.


Assuntos
Cobre , Reciclagem , Ligas , Estados Unidos
9.
Environ Sci Technol ; 55(9): 6421-6429, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33826846

RESUMO

China's rapid growth was fueled by investments that grew more than 10-fold since 1995. Little is known about how the capital assets acquired, while being used in productive processes for years or decades, satisfy global final consumption of goods and services, or how the resource use and emissions that occurred during capital formation are attributable to past or future consumption. Here, enabled by a new global model of capital formation and use, we quantify the linkages over the past 2 decades and into the future between six environmental pressures (EPs) associated with China's capital formation and attributable to Chinese as well as non-Chinese consumption. We show that only 35% of the capital assets acquired by China from 1995 to 2015, representing 32-39% of the associated EPs (e.g., water consumption, greenhouse gas (GHG) emissions, and metal ore extractions), have been depreciated, while the majority rest will serve future production and consumption. The outsourcing of capital services and the associated EPs are considerable, ranging from 14 to 25% of depending on the EP indicators. Without accounting for the capital-final consumption linkages across time and space, one would miscalculate China's environmental footprints related to the six EPs by big margins, from -61% to +114%.


Assuntos
Gases de Efeito Estufa , China , Previsões
10.
Environ Sci Technol ; 53(12): 6814-6823, 2019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-31119936

RESUMO

A detailed understanding of the mercury footprint at subnational entity levels can facilitate the implementation of the "Minamata Convention on Mercury", especially for China, the largest mercury emitter worldwide. Some provinces of China have more than 100 million people, with economic activities and energy consumption levels comparable to those of smaller G7 countries. We constructed a stochastic, nested multiregion input-output (MRIO) model, which regionalized the China block in the EXIOBASE global-scale MRIO table, to model the mercury footprint associated with global supply chains spanning China's regions and other countries. The results show that Tianjin, Shanghai, and Ningxia had the highest per capita mercury footprint in China, which was comparable to the footprint of Australia and Norway and exceeded the footprint of most other countries. Some developed regions in China (e.g., Guangdong, Jiangsu) had higher mercury final product-based inventories (FBI) and consumption-based inventories (CBI) than production-based inventories (PBI), emphasizing the role of these regions as centers of both consumption and economic control. Uncertainties of Chinese provincial mercury footprint varied from 8% to 34%. Our research also revealed that international and inter-regional final product and intermediate product trades reshape the mercury emissions of Chinese provinces and other countries to a certain extent.


Assuntos
Mercúrio , Austrália , China , Noruega
12.
Environ Sci Technol ; 52(22): 13250-13259, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30198257

RESUMO

Nearly 30% of global greenhouse gas emissions are associated with the production of capital goods. Consumption-based emission calculations based on multiregional input-output (MRIO) models allocate emissions occurring in the production of intermediate goods to the final goods produced in an economy. Like intermediate goods, capital goods are used in production processes; yet the emissions associated with their production are not allocated to the industries using them. As a result, the carbon footprint of final consumption as well as emissions embodied in trade are currently underestimated. Here, we address this problem by endogenizing capital transactions in the EXIOBASE global MRIO database, thereby allocating emissions from capital goods to final consumption. We find that endogenizing capital substantially increases the carbon footprint of final consumption (by up to 57% for some countries), and that the gap between production-based and consumption-based emissions increases for most countries. We also find that the global emissions embodied in trade increase by up to 11%, and that current patterns of bilaterally traded emissions are amplified. Furthermore, endogenizing capital leads to a 3-fold increase in the carbon footprint of certain product categories. The results suggest that our approach constitutes an important improvement to current input-output methodology.


Assuntos
Pegada de Carbono , Gases de Efeito Estufa , Indústrias
13.
Environ Sci Technol ; 52(23): 14006-14014, 2018 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-30411613

RESUMO

A rapidly increasing use of building materials poses threats to resources and the environment. Using novel, localized life cycle inventories and building material intensity data, this study quantifies the resource use of building materials in mainland China and evaluates their embodied environmental impacts. Newly built floor area and related material consumption grew 11% per annum from 2000 to 2015, leveling off at the end of this period. Concrete, sand, gravel, brick, and cement were the main materials used. Spatially, construction activities expanded from east China into the central part of the country. Cement, steel, and concrete production are the key contributors to associated environmental impacts, e.g., cement and steel each account for around 25% of the global warming potential from building materials. Building materials contribute considerably to the impact categories of human toxicity, fossil depletion, and global warming, emphasizing that greenhouse gas emissions should not be the sole focus of research on environmental impacts of building materials. These findings quantitatively shed light on the urgent need to reduce environmental impacts and to conserve energy in the manufacturing processes of building materials on the national scale.


Assuntos
Materiais de Construção , Gases de Efeito Estufa , China , Meio Ambiente , Aquecimento Global , Humanos
14.
Proc Natl Acad Sci U S A ; 112(20): 6277-82, 2015 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-25288741

RESUMO

Decarbonization of electricity generation can support climate-change mitigation and presents an opportunity to address pollution resulting from fossil-fuel combustion. Generally, renewable technologies require higher initial investments in infrastructure than fossil-based power systems. To assess the tradeoffs of increased up-front emissions and reduced operational emissions, we present, to our knowledge, the first global, integrated life-cycle assessment (LCA) of long-term, wide-scale implementation of electricity generation from renewable sources (i.e., photovoltaic and solar thermal, wind, and hydropower) and of carbon dioxide capture and storage for fossil power generation. We compare emissions causing particulate matter exposure, freshwater ecotoxicity, freshwater eutrophication, and climate change for the climate-change-mitigation (BLUE Map) and business-as-usual (Baseline) scenarios of the International Energy Agency up to 2050. We use a vintage stock model to conduct an LCA of newly installed capacity year-by-year for each region, thus accounting for changes in the energy mix used to manufacture future power plants. Under the Baseline scenario, emissions of air and water pollutants more than double whereas the low-carbon technologies introduced in the BLUE Map scenario allow a doubling of electricity supply while stabilizing or even reducing pollution. Material requirements per unit generation for low-carbon technologies can be higher than for conventional fossil generation: 11-40 times more copper for photovoltaic systems and 6-14 times more iron for wind power plants. However, only two years of current global copper and one year of iron production will suffice to build a low-carbon energy system capable of supplying the world's electricity needs in 2050.


Assuntos
Fontes de Energia Elétrica/economia , Poluentes Ambientais/economia , Aquecimento Global/prevenção & controle , Modelos Econômicos , Energia Renovável , Dióxido de Carbono/química , Cobre/química , Humanos , Ferro/química
15.
Environ Sci Technol ; 51(17): 9899-9910, 2017 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-28745496

RESUMO

Human health and economic prosperity are vulnerable to freshwater shortage in many parts of the world. Despite a growing literature that examines the freshwater vulnerability in various spatiotemporal contexts, existing knowledge has been conventionally constrained by a territorial perspective. On the basis of spatial analyses of monthly water and electricity flows across 2110 watersheds and three interconnected power systems, this study investigates the water-electricity nexus (WEN)'s transboundary effects on freshwater vulnerability in the continental United States in 2014. The effects are shown to be considerable and heterogeneous across time and space. For at least one month a year, 58 million people living in water-abundant watersheds were exposed to additional freshwater vulnerability by relying on electricity generated by freshwater-cooled thermal energy conversion cycles in highly stressed watersheds; for 72 million people living in highly stressed watersheds, their freshwater vulnerability was mitigated by using imported electricity generated in water-abundant watersheds or power plants running dry cooling or using nonfreshwater for cooling purposes. On the country scale, the mitigation effects were the most significant during September and October, while the additional freshwater vulnerability was more significant in February, March, and December. Due to the WEN's transboundary effects, overall, the freshwater vulnerability was slightly worsened within the Eastern Interconnection, substantially improved within the Western Interconnection, and least affected within the ERCOT Interconnection.


Assuntos
Água Doce , Abastecimento de Água , Eletricidade , Humanos , Centrais Elétricas , Estados Unidos , Água
16.
Environ Sci Technol ; 50(19): 10512-10517, 2016 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-27587304

RESUMO

Life cycle thinking asks companies and consumers to take responsibility for emissions along their entire supply chain. As the world economy becomes more complex it is increasingly difficult to connect consumers and other downstream users to the origins of their greenhouse gas (GHG) emissions. Given the important role of subnational entities-cities, states, and companies-in GHG abatement efforts, it would be advantageous to better link downstream users to facilities and regulators who control primary emissions. We present a new spatially explicit carbon footprint method for establishing such connections. We find that for most developed countries the carbon footprint has diluted and spread: for example, since 1970 the U.S. carbon footprint has grown 23% territorially, and 38% in consumption-based terms, but nearly 200% in spatial extent (i.e., the minimum area needed to contain 90% of emissions). The rapidly growing carbon footprints of China and India, however, do not show such a spatial expansion of their consumption footprints in spite of their increasing participation in the world economy. In their case, urbanization concentrates domestic pollution and this offsets the increasing importance of imports.


Assuntos
Pegada de Carbono , Efeito Estufa , Cidades , Poluição Ambiental , Índia
17.
Environ Sci Technol ; 49(18): 11218-26, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26308384

RESUMO

Climate change mitigation demands large-scale technological change on a global level and, if successfully implemented, will significantly affect how products and services are produced and consumed. In order to anticipate the life cycle environmental impacts of products under climate mitigation scenarios, we present the modeling framework of an integrated hybrid life cycle assessment model covering nine world regions. Life cycle assessment databases and multiregional input-output tables are adapted using forecasted changes in technology and resources up to 2050 under a 2 °C scenario. We call the result of this modeling "technology hybridized environmental-economic model with integrated scenarios" (THEMIS). As a case study, we apply THEMIS in an integrated environmental assessment of concentrating solar power. Life-cycle greenhouse gas emissions for this plant range from 33 to 95 g CO2 eq./kWh across different world regions in 2010, falling to 30-87 g CO2 eq./kWh in 2050. Using regional life cycle data yields insightful results. More generally, these results also highlight the need for systematic life cycle frameworks that capture the actual consequences and feedback effects of large-scale policies in the long term.


Assuntos
Mudança Climática , Tecnologia , Eletricidade , Modelos Teóricos
18.
Environ Sci Technol ; 47(17): 9604-11, 2013 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-23909506

RESUMO

The ability of hydropower to contribute to climate change mitigation is sometimes questioned, citing emissions of methane and carbon dioxide resulting from the degradation of biogenic carbon in hydropower reservoirs. These emissions are, however, not always addressed in life cycle assessment, leading to a bias in technology comparisons, and often misunderstood. The objective of this paper is to review and analyze the generation of greenhouse gas emissions from reservoirs for the purpose of technology assessment, relating established emission measurements to power generation. A literature review, data collection, and statistical analysis of methane and CO2 emissions are conducted. In a sample of 82 measurements, methane emissions per kWh hydropower generated are log-normally distributed, ranging from micrograms to 10s of kg. A multivariate regression analysis shows that the reservoir area per kWh electricity is the most important explanatory variable. Methane emissions flux per reservoir area are correlated with the natural net primary production of the area, the age of the power plant, and the inclusion of bubbling emissions in the measurement. Even together, these factors fail to explain most of the variation in the methane flux. The global average emissions from hydropower are estimated to be 85 gCO2/kWh and 3 gCH4/kWh, with a multiplicative uncertainty factor of 2. GHG emissions from hydropower can be largely avoided by ceasing to build hydropower plants with high land use per unit of electricity generated.


Assuntos
Dióxido de Carbono/análise , Efeito Estufa , Metano/análise , Energia Renovável , Monitoramento Ambiental , Rios , Movimentos da Água
19.
Environ Sci Technol ; 47(6): 2948-56, 2013 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-23409942

RESUMO

We develop and assess life cycle inventories of a conceptual offshore wind farm using a hybrid life cycle assessment (LCA) methodology. Special emphasis is placed on aspects of installation, operation, and maintenance, as these stages have been given only cursory consideration in previous LCAs. The results indicate that previous studies have underestimated the impacts caused by offshore operations and (though less important) exchange of parts. Offshore installation and maintenance activities cause 28% (10 g CO(2)-Eq/kWh) of total greenhouse gas emissions and 31-45% of total impact indicator values at the most (marine eutrophication, acidification, particulates, photochemical ozone). Transport and dumping of rock in installation phase and maintenance of wind turbines in use phase are major contributory activities. Manufacturing of spare parts is responsible for 6% (2 g CO2-Eq/kWh) of greenhouse gas emissions and up to 13% of total impact indicator values (freshwater ecotoxicity). Assumptions on lifetimes, work times for offshore activities and implementation of NOx abatement on vessels are shown to have a significant influence on results. Another source of uncertainty is assumed operating mode data for vessels determining fuel consumption rates.


Assuntos
Navios , Vento , Eletricidade , Meio Ambiente , Eutrofização , Efeito Estufa , Navios/instrumentação
20.
Environ Sci Technol ; 46(20): 10883-91, 2012 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-23013466

RESUMO

A nation's consumption of goods and services causes various environmental pressures all over the world due to international trade. We use a multiregional input-output model to assess three kinds of environmental footprints for the member states of the European Union. Footprints are indicators that take the consumer responsibility approach to account for the total direct and indirect effects of a product or consumption activity. We quantify the total environmental pressures (greenhouse gas emissions: carbon footprint; appropriation of biologically productive land and water area: land footprint; and freshwater consumption: water footprint) caused by consumption in the EU. We find that the consumption activities by an average EU citizen in 2004 led to 13.3 tCO(2)e of induced greenhouse gas emissions, appropriation of 2.53 gha (hectares of land with global-average biological productivity), and consumption of 179 m(3) of blue water (ground and surface water). By comparison, the global averages were 5.7 tCO(2)e, 1.23 gha, and 163 m(3) blue water, respectively. Overall, the EU displaced all three types of environmental pressures to the rest of the world, through imports of products with embodied pressures. Looking at intra-EU displacements only, the UK was the most important displacer overall, while the largest net exporters of embodied environmental pressures were Poland (greenhouse gases), France (land), and Spain (freshwater).


Assuntos
Pegada de Carbono , Comércio , Abastecimento de Água , Poluição do Ar/prevenção & controle , Poluição do Ar/estatística & dados numéricos , Conservação dos Recursos Naturais , Meio Ambiente , Política Ambiental , União Europeia , França , Polônia , Espanha , Reino Unido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA