Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Plant J ; 113(4): 802-818, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36575919

RESUMO

Hybridizations between Musa species and subspecies, enabled by their transport via human migration, were proposed to have played an important role in banana domestication. We exploited sequencing data of 226 Musaceae accessions, including wild and cultivated accessions, to characterize the inter(sub)specific hybridization pattern that gave rise to cultivated bananas. We identified 11 genetic pools that contributed to cultivars, including two contributors of unknown origin. Informative alleles for each of these genetic pools were pinpointed and used to obtain genome ancestry mosaics of accessions. Diploid and triploid cultivars had genome mosaics involving three up to possibly seven contributors. The simplest mosaics were found for some diploid cultivars from New Guinea, combining three contributors, i.e., banksii and zebrina representing Musa acuminata subspecies and, more unexpectedly, the New Guinean species Musa schizocarpa. Breakpoints of M. schizocarpa introgressions were found to be conserved between New Guinea cultivars and the other analyzed diploid and triploid cultivars. This suggests that plants bearing these M. schizocarpa introgressions were transported from New Guinea and gave rise to currently cultivated bananas. Many cultivars showed contrasted mosaics with predominant ancestry from their geographical origin across Southeast Asia to New Guinea. This revealed that further diversification occurred in different Southeast Asian regions through hybridization with other Musa (sub)species, including two unknown ancestors that we propose to be M. acuminata ssp. halabanensis and a yet to be characterized M. acuminata subspecies. These results highlighted a dynamic crop formation process that was initiated in New Guinea, with subsequent diversification throughout Southeast Asia.


Assuntos
Genoma de Planta , Musa , Humanos , Genoma de Planta/genética , Musa/genética , Nova Guiné , Triploidia , Hibridização Genética
2.
Theor Appl Genet ; 137(4): 81, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38478168

RESUMO

KEY MESSAGE: Six QTLs of resistance to sugarcane orange rust were identified in modern interspecific hybrids by GWAS. For five of them, the resistance alleles originated from S. spontaneum. Altogether, they efficiently predict disease resistance. Sugarcane orange rust (SOR) is a threatening emerging disease in many sugarcane industries worldwide. Improving the genetic resistance of commercial cultivars remains the most promising solution to control this disease. In this study, an association panel of 568 modern interspecific sugarcane hybrids (Saccharum officinarum x S. spontaneum) from Réunion's breeding program was evaluated for its resistance to SOR under natural conditions of infection. Two genome-wide association studies (GWAS) were conducted between disease reactions and 183,842 single nucleotide polymorphism (SNP) markers obtained by targeted genotyping-by-sequencing. Five resistance quantitative trait loci (QTLs), named Oru1, Oru2, Oru3, Oru4 and Oru5, were identified using a single-locus GWAS (SL-GWAS). These five QTLs all originated from the species S. spontaneum. A multi-locus GWAS (ML-GWAS) uncovered an additional but less significant resistance QTL named Oru6, which originated from S. officinarum. All six QTLs had a moderate to major phenotypic effect on disease resistance. Prediction accuracy estimated with linear regression models based on each of the five QTLs identified by SL-GWAS was between 0.16-0.41. Altogether, these five QTLs provided a relatively high prediction accuracy of 0.60. In comparison, accuracies obtained with six genome-wide prediction models (i.e., GBLUP, Bayes-A, Bayes-B, Bayes-C, Bayesian Lasso and RKHS) reached only 0.65. The good prediction accuracy of disease resistance provided by the QTLs and the predominant S. spontaneum origin of their resistance alleles pave the way for effective marker-assisted breeding strategies.


Assuntos
Saccharum , Saccharum/genética , Estudo de Associação Genômica Ampla , Teorema de Bayes , Alelos , Resistência à Doença/genética , Melhoramento Vegetal
3.
Ann Bot ; 131(7): 1149-1161, 2023 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-37267450

RESUMO

BACKGROUND AND AIMS: Cultivated bananas resulted from inter(sub)specific hybridizations involving Musa species and subspecies (M. acuminata subspecies, M. schizocarpa, M. balbisiana) and the subsequent selection, centuries ago, of hybrids with parthenocarpic, seedless fruits. Cultivars have low fertility and are vegetatively propagated, forming groups of somaclones. Relatively few of them, mainly triploids, are grown on a large scale and characterization of their parental relationships may be useful for breeding strategies. Here we investigate parental relationships and gamete-type contributions among diploid and polyploid banana cultivars. METHODS: We used SNP genotyping data from whole-genome sequencing of 178 banana individuals, including 111 cultivars, 55 wild bananas and 12 synthetic F1 hybrids. We analysed the proportion of SNP sites in accordance with direct parentage with a global statistic and along chromosomes for selected individuals. KEY RESULTS: We characterized parentage relationships for 7 diploid cultivars, 11 triploid cultivars and 1 tetraploid cultivar. Results showed that both diploid and triploid cultivars could have contributed gametes to other banana cultivars. Diploids may have contributed 1x or 2x gametes and triploids 1x to 3x gametes. The Mchare diploid cultivar group, nowadays only found in East Africa, was found as parent of two diploid and eight triploid cultivars. In five of its identified triploid offspring, corresponding to main export or locally popular dessert bananas, Mchare contributed a 2x gamete with full genome restitution without recombination. Analyses of remaining haplotypes in these Mchare offspring suggested ancestral pedigree relationships between different interspecific banana cultivars. CONCLUSIONS: The current cultivated banana resulted from different pathways of formation, with implication of recombined or un-recombined unreduced gametes produced by diploid or triploid cultivars. Identification of dessert banana's parents and the types of gametes they contributed should support the design of breeding strategies.


Assuntos
Musa , Triploidia , Musa/genética , Diploide , Hibridização Genética , Células Germinativas
4.
Plant J ; 104(6): 1698-1711, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33067829

RESUMO

Chromosome rearrangements and the way that they impact genetic differentiation and speciation have long raised questions from evolutionary biologists. They are also a major concern for breeders because of their bearing on chromosome recombination. Banana is a major crop that derives from inter(sub)specific hybridizations between various once geographically isolated Musa species and subspecies. We sequenced 155 accessions, including banana cultivars and representatives of Musa diversity, and genotyped-by-sequencing 1059 individuals from 11 progenies. We precisely characterized six large reciprocal translocations and showed that they emerged in different (sub)species of Musa acuminata, the main contributor to currently cultivated bananas. Most diploid and triploid cultivars analyzed were structurally heterozygous for 1 to 4 M. acuminata translocations, highlighting their complex origin. We showed that all translocations induced a recombination reduction of variable intensity and extent depending on the translocations, involving only the breakpoint regions, a chromosome arm, or an entire chromosome. The translocated chromosomes were found preferentially transmitted in many cases. We explore and discuss the possible mechanisms involved in this preferential transmission and its impact on translocation colonization.


Assuntos
Cromossomos de Plantas/genética , Evolução Molecular , Musa/genética , Translocação Genética/genética , Aneuploidia , Análise Citogenética , Hibridização in Situ Fluorescente
5.
Ann Bot ; 127(6): 827-840, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33637991

RESUMO

BACKGROUND AND AIMS: Modern sugarcane cultivars (Saccharum spp.) are high polyploids, aneuploids (2n = ~12x = ~120) derived from interspecific hybridizations between the domesticated sweet species Saccharum officinarum and the wild species S. spontaneum. METHODS: To analyse the architecture and origin of such a complex genome, we analysed the sequences of all 12 hom(oe)ologous haplotypes (BAC clones) from two distinct genomic regions of a typical modern cultivar, as well as the corresponding sequence in Miscanthus sinense and Sorghum bicolor, and monitored their distribution among representatives of the Saccharum genus. KEY RESULTS: The diversity observed among haplotypes suggested the existence of three founding genomes (A, B, C) in modern cultivars, which diverged between 0.8 and 1.3 Mya. Two genomes (A, B) were contributed by S. officinarum; these were also found in its wild presumed ancestor S. robustum, and one genome (C) was contributed by S. spontaneum. These results suggest that S. officinarum and S. robustum are derived from interspecific hybridization between two unknown ancestors (A and B genomes). The A genome contributed most haplotypes (nine or ten) while the B and C genomes contributed one or two haplotypes in the regions analysed of this typical modern cultivar. Interspecific hybridizations likely involved accessions or gametes with distinct ploidy levels and/or were followed by a series of backcrosses with the A genome. The three founding genomes were found in all S. barberi, S. sinense and modern cultivars analysed. None of the analysed accessions contained only the A genome or the B genome, suggesting that representatives of these founding genomes remain to be discovered. CONCLUSIONS: This evolutionary model, which combines interspecificity and high polyploidy, can explain the variable chromosome pairing affinity observed in Saccharum. It represents a major revision of the understanding of Saccharum diversity.


Assuntos
Saccharum , Genoma de Planta/genética , Genômica , Haplótipos/genética , Poliploidia , Saccharum/genética
6.
Mol Biol Evol ; 36(1): 97-111, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30403808

RESUMO

Admixture and polyploidization are major recognized eukaryotic genome evolutionary processes. Their impacts on genome dynamics vary among systems and are still partially deciphered. Many banana cultivars are triploid (sometimes diploid) interspecific hybrids between Musa acuminata (A genome) and M. balbisiana (B genome). They have no or very low fertility, are vegetatively propagated and have been classified as "AB," "AAB," or "ABB" based on morphological characters. We used NGS sequence data to characterize the A versus B chromosome composition of nine diploid and triploid interspecific cultivars, to compare the chromosome structures of A and B genomes and analyze A/B chromosome segregations in a polyploid context. We showed that interspecific recombination occurred frequently between A and B chromosomes. We identified two large structural variations between A and B genomes, a reciprocal translocation and an inversion that locally affected recombination and led to segregation distortion and aneuploidy in a triploid progeny. Interspecific recombination and large structural variations explained the mosaic genomes observed in edible bananas. The unprecedented resolution in deciphering their genome structure allowed us to start revisiting the origins of banana cultivars and provided new information to gain insight into the impact of interspecificity on genome evolution. It will also facilitate much more effective assessment of breeding strategies.


Assuntos
Segregação de Cromossomos , Genoma de Planta , Variação Estrutural do Genoma , Musa/genética , Recombinação Genética , Cromossomos de Plantas , Ploidias
7.
Ann Bot ; 123(1): 19-36, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30247503

RESUMO

Background and Aims: Besides bananas belonging to the AAA triploid Mutika subgroup, which predominates in the Great Lakes countries, other AAA triploids as well as edible AA diploids, locally of considerable cultural weight, are cultivated in East Africa and in the nearby Indian Ocean islands as far as Madagascar. All these varieties call for the genetic identification and characterization of their interrelations on account of their regional socio-economic significance and their potential for banana breeding strategies. Methods: An extensive sampling of all traditional bananas in East Africa and near Indian Ocean islands was genotyped with simple sequence repeat (SSR) markers, with particular emphasis on the diploid forms and on the bananas of the Indian Ocean islands, which remain poorly characterized. Key Results: All the edible AA varieties studied here are genetically homogeneous, constituting a unique subgroup, here called 'Mchare', despite high phenotypic variation and adaptions to highly diverse ecological zones. At triploid level, and besides the well-known AAA Mutika subgroup, at least two other genetically related AAA subgroups specific to this region are identified. Neither of these East African AAA genotypes can be derived directly from the local AA Mchare diploids. However, it is demonstrated that the East African diploids and triploids together belong to the same genetic complex. The geographical distribution of their wild acuminata relatives allowed identification of the original area of this complex in a restricted part of island South-East Asia. The inferred origin leads to consideration of the history of banana introduction in Africa. Linked to biological features, documentation on the embedding of bananas in founding legends and myths and convincing linguistic elements were informative regarding the period and the peoples who introduced these Asian plants into Africa. The results point to the role of Austronesian-speaking peoples who colonized the Indian Ocean islands, particularly Madagascar, and reached the East African coasts. Conclusions: Understanding of the relations between the components of this complex and identifying their Asian wild relatives and related cultivars will be a valuable asset in breeding programmes and will boost the genetic improvement of East African bananas, but also of other globally important subgroups, in particular the AAA Cavendish.


Assuntos
Diploide , Variação Genética , Musa/genética , Triploidia , África Oriental , Sudeste Asiático
8.
Ann Bot ; 124(2): 319-329, 2019 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-31241133

RESUMO

BACKGROUND AND AIMS: Banana cultivars are derived from hybridizations involving Musa acuminata subspecies. The latter diverged following geographical isolation in distinct South-east Asian continental regions and islands. Observation of chromosome pairing irregularities in meiosis of hybrids between these subspecies suggested the presence of large chromosomal structural variations. The aim of this study was to characterize such rearrangements. METHODS: Marker (single nucleotide polymorphism) segregation in a self-progeny of the 'Calcutta 4' accession and mate-pair sequencing were used to search for chromosomal rearrangements in comparison with the M. acuminata ssp. malaccensis genome reference sequence. Signature segment junctions of the revealed chromosome structures were identified and searched in whole-genome sequencing data from 123 wild and cultivated Musa accessions. KEY RESULTS: Two large reciprocal translocations were characterized in the seedy banana M. acuminata ssp. burmannicoides 'Calcutta 4' accession. One consisted of an exchange of a 240 kb distal region of chromosome 2 with a 7.2 Mb distal region of chromosome 8. The other involved an exchange of a 20.8 Mb distal region of chromosome 1 with a 11.6 Mb distal region of chromosome 9. Both translocations were found only in wild accessions belonging to the burmannicoides/burmannica/siamea subspecies. Only two of the 87 cultivars analysed displayed the 2/8 translocation, while none displayed the 1/9 translocation. CONCLUSION: Two large reciprocal translocations were identified that probably originated in the burmannica genetic group. Accurate characterization of these translocations should enhance the use of this disease resistance-rich burmannica group in breeding programmes.


Assuntos
Musa , Resistência à Doença , Humanos , Hibridização Genética , Índia , Ilhas
9.
Mol Biol Evol ; 34(9): 2140-2152, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28575404

RESUMO

Most banana cultivars are triploid seedless parthenocarpic clones derived from hybridization between Musa acuminata subspecies and sometimes M. balbisiana. M. acuminata subspecies were suggested to differ by a few large chromosomal rearrangements based on chromosome pairing configurations in intersubspecies hybrids. We searched for large chromosomal rearrangements in a seedy M. acuminata ssp. malaccensis banana accession through mate-pair sequencing, BAC-FISH, targeted PCR and marker (DArTseq) segregation in its progeny. We identified a heterozygous reciprocal translocation involving two distal 3 and 10 Mb segments from chromosomes 01 and 04, respectively, and showed that it generated high segregation distortion, reduced recombination and linkage between chromosomes 01 and 04 in its progeny. The two chromosome structures were found to be mutually exclusive in gametes and the rearranged structure was preferentially transmitted to the progeny. The rearranged chromosome structure was frequently found in triploid cultivars but present only in wild malaccensis ssp. accessions, thus suggesting that this rearrangement occurred in M. acuminata ssp. malaccensis. We propose a mechanism for the spread of this rearrangement in Musa diversity and suggest that this rearrangement could have played a role in the emergence of triploid cultivars.


Assuntos
Musa/genética , Cromossomos de Plantas/genética , DNA de Plantas/genética , Evolução Molecular , Ligação Genética/genética , Genoma de Planta/genética , Hibridização Genética/genética , Análise de Sequência de DNA/métodos , Translocação Genética/genética
10.
BMC Plant Biol ; 18(1): 333, 2018 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-30518342

RESUMO

BACKGROUND: Among semi-aquatic species of the legume genus Aeschynomene, some have the property of being nodulated by photosynthetic Bradyrhizobium lacking the nodABC genes necessary for the synthesis of Nod factors. Knowledge of the specificities underlying this Nod-independent symbiosis has been gained from the model legume Aeschynomene evenia but our understanding remains limited due to the lack of comparative genetics with related taxa using a Nod factor-dependent process. To fill this gap, we combined different approaches to perform a thorough comparative analysis in the genus Aeschynomene. RESULTS: This study significantly broadened previous taxon sampling, including in allied genera, in order to construct a comprehensive phylogeny. In the phylogenetic tree, five main lineages were delineated, including a novel lineage, the Nod-independent clade and another one containing a polytomy that comprised several Aeschynomene groups and all the allied genera. This phylogeny was matched with data on chromosome number, genome size and low-copy nuclear gene sequences to reveal the diploid species and a polytomy containing mostly polyploid taxa. For these taxa, a single allopolyploid origin was inferred and the putative parental lineages were identified. Finally, nodulation tests with different Bradyrhizobium strains revealed new nodulation behaviours and the diploid species outside of the Nod-independent clade were compared for their experimental tractability and genetic diversity. CONCLUSIONS: The extended knowledge of the genetics and biology of the different lineages sheds new light of the evolutionary history of the genus Aeschynomene and they provide a solid framework to exploit efficiently the diversity encountered in Aeschynomene legumes. Notably, our backbone tree contains all the species that are diploid and it clarifies the genetic relationships between the Nod-independent clade and the Nod-dependent lineages. This study enabled the identification of A. americana and A. patula as the most suitable species to undertake a comparative genetic study of the Nod-independent and Nod-dependent symbioses.


Assuntos
Fabaceae/genética , Simbiose/genética , Evolução Biológica , Bradyrhizobium , Fabaceae/metabolismo , Fabaceae/fisiologia , Genômica , Fixação de Nitrogênio , Filogenia , Nodulação/genética , Ploidias
11.
Bioorg Med Chem Lett ; 28(8): 1269-1273, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29571573

RESUMO

Progress in the identification of suitable RORγ inverse agonists as clinical candidates has been hampered by the high lipophilicity that seems required for high potency on this nuclear receptor. In this context, we decided to focus on the replacement of the hydroxymethyl group found on known modulators to determine if more polarity could be tolerated in this position. SAR of the replacement of this moiety is presented in this article leading to the identification of sulfoximine derivatives as potent modulators with pharmacological activity in the in vivo mouse Imiquimod psoriasis model.


Assuntos
Iminas/farmacologia , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/antagonistas & inibidores , Sulfonamidas/farmacologia , Sulfóxidos/farmacologia , Animais , Agonismo Inverso de Drogas , Feminino , Humanos , Iminas/síntese química , Iminas/química , Ligantes , Camundongos Endogâmicos BALB C , Estrutura Molecular , Estereoisomerismo , Relação Estrutura-Atividade , Sulfonamidas/síntese química , Sulfonamidas/química , Sulfóxidos/síntese química , Sulfóxidos/química
12.
New Phytol ; 211(3): 1077-91, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27061605

RESUMO

The legume genus Aeschynomene is notable in the ability of certain semiaquatic species to develop nitrogen-fixing stem nodules. These species are distributed in two clades. In the first clade, all the species are characterized by the use of a unique Nod-independent symbiotic process. In the second clade, the species use a Nod-dependent symbiotic process and some of them display a profuse stem nodulation as exemplified in the African Aeschynomene afraspera. To facilitate the molecular analysis of the symbiotic characteristics of such legumes, we took an integrated molecular and cytogenetic approach to track occurrences of polyploidy events and to analyze their impact on the evolution of the African species of Aeschynomene. Our results revealed two rounds of polyploidy: a paleopolyploid event predating the African group and two neopolyploid speciations, along with significant chromosomal variations. Hence, we found that A. afraspera (8x) has inherited the contrasted genomic properties and the stem-nodulation habit of its parental lineages (4x). This study reveals a comprehensive picture of African Aeschynomene diversification. It notably evidences a history that is distinct from the diploid Nod-independent clade, providing clues for the identification of the specific determinants of the Nod-dependent and Nod-independent symbiotic processes, and for comparative analysis of stem nodulation.


Assuntos
Organismos Aquáticos/genética , Evolução Biológica , Fabaceae/genética , Poliploidia , Cruzamento , Flores/anatomia & histologia , Duplicação Gênica , Genoma de Planta , Hibridização Genética , Cariótipo , Filogenia , Caules de Planta/fisiologia , Especificidade da Espécie , Fatores de Tempo , Transcriptoma/genética
13.
Proc Natl Acad Sci U S A ; 110(8): 3041-6, 2013 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-23386724

RESUMO

Stabilization of virus protein structure and nucleic acid integrity is challenging yet essential to preserve the transcriptional competence of live recombinant viral vaccine vectors in the absence of a cold chain. When coupled with needle-free skin delivery, such a platform would address an unmet need in global vaccine coverage against HIV and other global pathogens. Herein, we show that a simple dissolvable microneedle array (MA) delivery system preserves the immunogenicity of vaccines encoded by live recombinant human adenovirus type 5 (rAdHu5). Specifically, dried rAdHu5 MA immunization induced CD8(+) T-cell expansion and multifunctional cytokine responses equipotent with conventional injectable routes of immunization. Intravital imaging demonstrated MA cargo distributed both in the epidermis and dermis, with acquisition by CD11c(+) dendritic cells (DCs) in the dermis. The MA immunizing properties were attributable to CD11c(+) MHCII(hi) CD8α(neg) epithelial cell adhesion molecule (EpCAM(neg)) CD11b(+) langerin (Lang; CD207)(neg) DCs, but neither Langerhans cells nor Lang(+) DCs were required for CD8(+) T-cell priming. This study demonstrates an important technical advance for viral vaccine vectors progressing to the clinic and provides insights into the mechanism of CD8(+) T-cell priming by live rAdHu5 MAs.


Assuntos
Adenoviridae/imunologia , Antígenos CD/fisiologia , Linfócitos T CD8-Positivos/imunologia , Lectinas Tipo C/fisiologia , Lectinas de Ligação a Manose/fisiologia , Agulhas , Pele , Vacinas Virais/imunologia , Adenoviridae/genética , Citometria de Fluxo , Vetores Genéticos , Microscopia Confocal
14.
J Immunol ; 189(5): 2274-82, 2012 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-22821960

RESUMO

There is an increasing body of evidence suggesting that the transfer of preformed MHC class I:peptide complexes between a virus-infected cell and an uninfected APC, termed cross-dressing, represents an important mechanism of Ag presentation to CD8+ T cells in host defense. However, although it has been shown that memory CD8+ T cells can be activated by uninfected dendritic cells (DCs) cross-dressed by Ag from virus-infected parenchymal cells, it is unknown whether conditions exist during virus infection in which naive CD8+ T cells are primed and differentiate to cytolytic effectors through cross-dressing, and indeed which DC subset would be responsible. In this study, we determine whether the transfer of MHC class I:peptide complexes between infected and uninfected murine DC plays a role in CD8+ T cell priming to viral Ags in vivo. We show that MHC class I:peptide complexes from peptide-pulsed or virus-infected DCs are indeed acquired by splenic CD8α⁻ DCs in vivo. Furthermore, the acquired MHC class I:peptide complexes are functional in that they induced Ag-specific CD8+ T cell effectors with cytolytic function. As CD8α⁻ DCs are poor cross-presenters, this may represent the main mechanism by which CD8α⁻ DCs present exogenously encountered Ag to CD8+ T cells. The sharing of Ag as preformed MHC class I:peptide complexes between infected and uninfected DCs without the restraints of Ag processing may have evolved to accurately amplify the response and also engage multiple DC subsets critical in the generation of strong antiviral immunity.


Assuntos
Antivirais/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/virologia , Células Dendríticas/metabolismo , Células Dendríticas/virologia , Imunidade Celular , Complexo Principal de Histocompatibilidade/imunologia , Fragmentos de Peptídeos/metabolismo , Adenoviridae/imunologia , Adenoviridae/metabolismo , Transferência Adotiva , Animais , Linfócitos T CD8-Positivos/imunologia , Células Cultivadas , Apresentação Cruzada/imunologia , Células Dendríticas/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Ovalbumina/administração & dosagem , Ovalbumina/metabolismo , Fragmentos de Peptídeos/administração & dosagem , Fragmentos de Peptídeos/biossíntese
15.
J Immunol ; 184(9): 4842-51, 2010 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-20351191

RESUMO

Langerhans cells (LCs) are dendritic cells (DCs) localized in stratified epithelia, such as those overlaying skin, buccal mucosa, and vagina. The contribution of LCs to the promotion or control of immunity initiated at epithelial sites remains debated. We report in this paper that an immunogen comprising OVA linked to the B subunit of cholera toxin, used as delivery vector, was efficient to generate CTLs after vaginal immunization. Using Lang-EGFP mice, we evaluated the contribution of distinct DC subsets to the generation of CD4 and CD8 T cell responses. We demonstrate that the vaginal epithelium, unlike the skin epidermis, includes a minor population of LCs and a major subset of langerin(-) DCs. Intravaginally administered Ag is taken up by LCs and langerin(-) DCs and carried up to draining lymph nodes, where both subsets prime CD8 T cells, unlike blood-derived DCs, although with distinct capabilities. LCs prime CD8 T cells with a cytokine profile dominated by IL-17, whereas Lang(-) DCs induce IFN-gamma-producing T cells. Using Lang-DTR-EGFP mice to ensure a transient ablation of LCs, we found that these cells not only are dispensable for the generation of genital CTL responses but also downregulate these responses, by a mechanism that may involve IL-10 and IL-17 cytokines. This finding has implications for the development of mucosal vaccines and immunotherapeutic strategies designed for the targeting of DCs.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Testes Imunológicos de Citotoxicidade , Interleucina-17/biossíntese , Células de Langerhans/imunologia , Mucosa Bucal/imunologia , Vacinas Conjugadas/imunologia , Vagina/imunologia , Administração Intravaginal , Sequência de Aminoácidos , Animais , Linfócitos T CD8-Positivos/metabolismo , Células Cultivadas , Toxina da Cólera/administração & dosagem , Toxina da Cólera/imunologia , Técnicas de Cocultura , Testes Imunológicos de Citotoxicidade/métodos , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Feminino , Células de Langerhans/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Dados de Sequência Molecular , Mucosa Bucal/citologia , Mucosa Bucal/metabolismo , Ovalbumina/administração & dosagem , Ovalbumina/imunologia , Fragmentos de Peptídeos/administração & dosagem , Fragmentos de Peptídeos/imunologia , Vacinas Conjugadas/administração & dosagem , Vagina/citologia , Vagina/metabolismo
16.
J Immunol ; 183(12): 7851-9, 2009 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-19933861

RESUMO

We have recently reported that the sublingual (s.l.) mucosa is an efficient site for inducing systemic and mucosal immune responses. In this study, the potential of s.l. immunization to induce remote Ab responses and CD8(+) cytotoxic responses in the female genital tract was examined in mice by using a nonreplicating Ag, OVA, and cholera toxin (CT) as an adjuvant. Sublingual administration of OVA and CT induced Ag-specific IgA and IgG Abs in blood and in cervicovaginal secretions. These responses were associated with large numbers of IgA Ab-secreting cells (ASCs) in the genital mucosa. Genital ASC responses were similar in magnitude and isotype distribution after s.l., intranasal, or vaginal immunization and were superior to those seen after intragastric immunization. Genital, but not blood or spleen, IgA ASC responses were inhibited by treatment with anti-CCL28 Abs, suggesting that the chemokine CCL28 plays a major role in the migration of IgA ASC progenitors to the reproductive tract mucosa. Furthermore, s.l. immunization with OVA induced OVA-specific effector CD8(+) cytolytic T cells in the genital mucosa, and these responses required coadministration of the CT adjuvant. Furthermore, s.l. administration of human papillomavirus virus-like particles with or without the CT adjuvant conferred protection against genital challenge with human papillomavirus pseudovirions. Taken together, these findings underscore the potential of s.l. immunization as an efficient vaccination strategy for inducing genital immune responses and should impact on the development of vaccines against sexually transmitted diseases.


Assuntos
Anticorpos Antibacterianos/biossíntese , Células Produtoras de Anticorpos/imunologia , Toxina da Cólera/imunologia , Papillomavirus Humano 16/imunologia , Ovalbumina/imunologia , Infecções por Papillomavirus/prevenção & controle , Linfócitos T Citotóxicos/imunologia , Neoplasias do Colo do Útero/prevenção & controle , Adjuvantes Imunológicos/administração & dosagem , Administração Sublingual , Animais , Anticorpos Antivirais/biossíntese , Células Produtoras de Anticorpos/citologia , Células Produtoras de Anticorpos/virologia , Diferenciação Celular/imunologia , Células Cultivadas , Toxina da Cólera/administração & dosagem , Modelos Animais de Doenças , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Mucosa/imunologia , Mucosa/virologia , Ovalbumina/administração & dosagem , Infecções por Papillomavirus/imunologia , Infecções por Papillomavirus/virologia , Linfócitos T Citotóxicos/virologia , Neoplasias do Colo do Útero/imunologia , Neoplasias do Colo do Útero/virologia , Vírion/imunologia
17.
Nat Commun ; 10(1): 2214, 2019 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-31101810

RESUMO

CD8+ T cells provide a critical defence from pathogens at mucosal epithelia including the female reproductive tract (FRT). Mucosal immunisation is considered essential to initiate this response, however this is difficult to reconcile with evidence that antigen delivered to skin can recruit protective CD8+ T cells to mucosal tissues. Here we dissect the underlying mechanism. We show that adenovirus serotype 5 (Ad5) bio-distributes at very low level to non-lymphoid tissues after skin immunisation. This drives the expansion and activation of CD3- NK1.1+ group 1 innate lymphoid cells (ILC1) within the FRT, essential for recruitment of CD8+ T-cell effectors. Interferon gamma produced by activated ILC1 is critical to licence CD11b+Ly6C+ monocyte production of CXCL9, a chemokine required to recruit skin primed CXCR3+ CD8+T-cells to the FRT. Our findings reveal a novel role for ILC1 to recruit effector CD8+ T-cells to prevent virus spread and establish immune surveillance at barrier tissues.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Genitália Feminina/imunologia , Pele/imunologia , Vacinas Virais/administração & dosagem , Viroses/prevenção & controle , Adenovírus Humanos/genética , Adenovírus Humanos/imunologia , Administração Cutânea , Animais , Quimiocina CXCL9 , Modelos Animais de Doenças , Feminino , Genitália Feminina/citologia , Genitália Feminina/virologia , Células HEK293 , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunidade Inata , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/imunologia , Mucosa/citologia , Mucosa/imunologia , Mucosa/virologia , Receptores CXCR3 , Pele/citologia , Pele/virologia , Resultado do Tratamento , Vacinação/métodos , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Vacinas Virais/genética , Vacinas Virais/imunologia , Viroses/imunologia , Viroses/virologia , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genética , Produtos do Gene gag do Vírus da Imunodeficiência Humana/imunologia
18.
Nat Plants ; 5(8): 810-821, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31308504

RESUMO

Banana cultivars (Musa ssp.) are diploid, triploid and tetraploid hybrids derived from Musa acuminata and Musa balbisiana. We presented a high-quality draft genome assembly of M. balbisiana with 430 Mb (87%) assembled into 11 chromosomes. We identified that the recent divergence of M. acuminata (A-genome) and M. balbisiana (B-genome) occurred after lineage-specific whole-genome duplication, and that the B-genome may be more sensitive to the fractionation process compared to the A-genome. Homoeologous exchanges occurred frequently between A- and B-subgenomes in allopolyploids. Genomic variation within progenitors resulted in functional divergence of subgenomes. Global homoeologue expression dominance occurred between subgenomes of the allotriploid. Gene families related to ethylene biosynthesis and starch metabolism exhibited significant expansion at the pathway level and wide homoeologue expression dominance in the B-subgenome of the allotriploid. The independent origin of 1-aminocyclopropane-1-carboxylic acid oxidase (ACO) homoeologue gene pairs and tandem duplication-driven expansion of ACO genes in the B-subgenome contributed to rapid and major ethylene production post-harvest in allotriploid banana fruits. The findings of this study provide greater context for understanding fruit biology, and aid the development of tools for breeding optimal banana cultivars.


Assuntos
Evolução Molecular , Genoma de Planta , Musa/genética , Etilenos/biossíntese , Variação Genética , Anotação de Sequência Molecular , Musa/metabolismo
19.
Nat Commun ; 9(1): 2638, 2018 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-29980662

RESUMO

Sugarcane (Saccharum spp.) is a major crop for sugar and bioenergy production. Its highly polyploid, aneuploid, heterozygous, and interspecific genome poses major challenges for producing a reference sequence. We exploited colinearity with sorghum to produce a BAC-based monoploid genome sequence of sugarcane. A minimum tiling path of 4660 sugarcane BAC that best covers the gene-rich part of the sorghum genome was selected based on whole-genome profiling, sequenced, and assembled in a 382-Mb single tiling path of a high-quality sequence. A total of 25,316 protein-coding gene models are predicted, 17% of which display no colinearity with their sorghum orthologs. We show that the two species, S. officinarum and S. spontaneum, involved in modern cultivars differ by their transposable elements and by a few large chromosomal rearrangements, explaining their distinct genome size and distinct basic chromosome numbers while also suggesting that polyploidization arose in both lineages after their divergence.


Assuntos
Genoma de Planta/genética , Mosaicismo , Ploidias , Saccharum/genética , Sequência de Bases , Cromossomos Artificiais Bacterianos/genética , Cromossomos de Plantas/genética , Elementos de DNA Transponíveis/genética , Amplificação de Genes , Variação Estrutural do Genoma , Modelos Genéticos , Polimorfismo de Nucleotídeo Único/genética , Análise de Sequência de DNA , Sorghum/genética
20.
ChemMedChem ; 13(4): 321-337, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29327456

RESUMO

With possible implications in multiple autoimmune diseases, the retinoic acid receptor-related orphan receptor RORγ has become a sought-after target in the pharmaceutical industry. Herein are described the efforts to identify a potent RORγ inverse agonist compatible with topical application for the treatment of skin diseases. These efforts culminated in the discovery of N-(2,4-dimethylphenyl)-N-isobutyl-2-oxo-1-[(tetrahydro-2H-pyran-4-yl)methyl]-2,3-dihydro-1H-benzo[d]imidazole-5-sulfonamide (CD12681), a potent inverse agonist with in vivo activity in an IL-23-induced mouse skin inflammation model.


Assuntos
Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/agonistas , Psoríase/tratamento farmacológico , Sulfonamidas/química , Administração Tópica , Animais , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Agonismo Inverso de Drogas , Humanos , Concentração Inibidora 50 , Interleucina-17/metabolismo , Interleucina-23/farmacologia , Queratinócitos/citologia , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Psoríase/patologia , Dermatopatias/induzido quimicamente , Dermatopatias/tratamento farmacológico , Dermatopatias/patologia , Relação Estrutura-Atividade , Sulfonamidas/metabolismo , Sulfonamidas/uso terapêutico , Células Th17/citologia , Células Th17/efeitos dos fármacos , Células Th17/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA