Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Anal Chem ; 94(20): 7169-7173, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35532734

RESUMO

The use of scanning electrochemical microscopy (SECM) for nanoscale imaging of photoelectrochemical processes at semiconductor surfaces has recently been demonstrated. To illuminate a microscopic portion of the substrate surface facing the SECM probe, a glass-sealed, polished tip simultaneously served as a nanoelectrode and a light guide. One issue affecting nanoscale photo-SECM experiments is mechanical interactions of the rigid optical fiber with the tip motion controlled by the piezo-positioner. Here we report an improved experimental setup in which the tip is mechanically decoupled from the fiber and light is delivered to the back of the tip capillary using a complex lens system. The advantages of this approach are evident from the improved quality of the approach curves and photo-SECM images. The light intensity delivered from the optical fiber to the tip is not changed significantly by their decoupling.


Assuntos
Diagnóstico por Imagem , Iluminação , Eletroquímica/métodos , Microscopia Eletroquímica de Varredura , Cintilografia
2.
J Am Chem Soc ; 143(46): 19474-19485, 2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34775763

RESUMO

Thus far, no correlation between nanocluster structures and their electrochemiluminescence (ECL) has been identified. Herein, we report how face-centered-cubic and hexagonal close-packed structures of two Au21(SR)15 nanocluster isomers determine their chemical reactivity. The relationships were explored by means of ECL and photoluminescence spectroscopy. Both isomers reveal unprecedented ECL efficiencies in the near-infrared region, which are >10- and 270-fold higher than that of standard Ru(bpy)32+, respectively. Photoelectrochemical reactivity as well as ECL mechanisms were elucidated based on electrochemistry, spooling photoluminescence, and ECL spectroscopy, unfolding the three emission enhancement origins: (i) effectively exposed reactive facets available to undergo electron transfer reactions; (ii) individual excited-state regeneration loops; (iii) cascade generations of various exited states. Indeed, these discoveries will have immediate impacts on various applications including but not limited to single molecular detection as well as photochemistry and electrocatalysis toward clean photon-electron conversion processes such as light-harvesting and light-emitting technologies.

3.
Anal Chem ; 93(33): 11626-11633, 2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34387457

RESUMO

This work presents a thorough guide to procedures for absolute electrochemiluminescence (ECL) quantum efficiency (ΦECL) measurements, which if employed effectively should raise the research impact of ECL studies for any luminophore. Absolute measurements are not currently employed in ECL research. Instead, ECL efficiencies have been determined relative to Ru(bpy)32+ under similar conditions, regardless of whether the conditions are favorable for Ru(bpy)32+ emissions or not. In fact, the most cited Ru(bpy)32+ ΦECL is from the pioneering work by the Bard research group in 1973 by means of a rotating ring-disk electrode revolving at 52 rotations per second measured with a silicon photodiode. Our presented technique uses a common disk electrode, spectrometer, and photomultiplier tube to measure the ΦECL. The more common light detection hardware and electrodes combined with an in-depth calculation walkthrough will provide ECL researchers the necessary tools to implement ΦECL measurement procedures in their own laboratories. Following a facile instrument setup and calculation, a systematic study of Ru(bpy)32+ ΦECL finds comparable results to those performed by Bard and co-workers.


Assuntos
Medições Luminescentes , Dióxido de Silício , Eletrodos , Humanos , Silício
4.
Anal Chem ; 93(13): 5377-5382, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33769032

RESUMO

Scanning electrochemical microscopy (SECM) is a powerful technique for mapping surface reactivity and investigating heterogeneous processes on the nanoscale. Despite significant advances in high-resolution SECM and photo-SECM imaging, they cannot provide atomic scale structural information about surfaces. By correlating the SECM images with atomic scale structural and bonding information obtained by transmission electron microscopy (TEM) techniques with one-to-one correspondence, one can elucidate the nature of the active sites and understand the origins of heterogeneous surface reactivity. To enable multitechnique imaging of the same nanoscale portion of the electrode surface, we develop a methodology for using a TEM finder grid as a conductive support in SECM and photo-SECM experiments. In this paper, we present the results of our first nanoscale SECM and photo-SECM experiments on carbon TEM grids, including imaging of semiconductor nanorods.

5.
Chemistry ; 27(60): 14821-14825, 2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34543484

RESUMO

Bright, near-infrared electrochemiluminescence (NIR-ECL) of Au18 nanoclusters is reported herein. Spooling ECL and photoluminescence spectroscopy were used to track and link NIR emissions at 832 and 848 nm to three emissive species, Au18 0 *, Au18 1+ * and Au18 2+ *, with a considerably high ECL efficiency of 5.5 relative to that of the gold standard Ru(bpy)3 2+ /TPrA (with 5-6 % reported ECL efficiency). The unprecedentedly high efficiency is due to the overlapped oxidation potentials of Au18 0 and tri-n-propylamine as co-reactant, the exposed facets of Au18 0 gold core, and electrocatalytic loops. These discoveries will add a new member to the efficient NIR-ECL gold nanoclusters family and bring more potential applications.


Assuntos
Medições Luminescentes , Análise Espectral
6.
Nano Lett ; 19(2): 958-962, 2019 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-30615831

RESUMO

Particle-particle interfaces are ubiquitous in nanostructured photoelectrodes and photovoltaics, which are important devices for solar energy conversion. These interfaces are expected to cause performance losses in these devices, but how much loss they would incur is poorly defined. Here we use a subparticle photoelectrochemical current measurement, in combination with specific photoelectrode configurations, to quantify the current losses from single particle-particle interfaces formed between individual TiO2 nanorods operating as photoanodes in aqueous electrolytes. We find that a single interface leads to ∼20% photocurrent loss (i.e., ∼80% retention of the original current). Such quantitative, first-of-its-kind, information provides a metric for guiding the optimization and design of nanostructured photoelectrodes and photovoltaics.

7.
J Am Chem Soc ; 140(22): 6729-6740, 2018 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-29750519

RESUMO

Understanding the fundamental properties of charge carriers on the surface of semiconductor photo(electro)catalysts is key to the rational design of efficient photo(electro)catalytic devices for sunlight-driven energy conversion. Here high spatial resolution information is always desirable because of the ubiquitous heterogeneity in semiconductor particles. In this Perspective, we review the latest advances in nanoscale imaging and quantitative analysis of charge carrier activities on individual semiconductor particles down to subparticle resolution, covering the approaches of single-molecule super-resolution fluorescence imaging, scanning electron microscopy, and photoluminescence microscopy. We further highlight direct, operando functional assessments of their performances toward the targeted photo(electro)catalytic processes through single- and subparticle photocurrent measurements. We also discuss the significance of establishing quantitative relations between the desired functions of photo(electro)catalysts and their surface charge carrier activities. These fundamental relations can provide guiding principles for rationally engineering photo(electro)catalytic systems, for example with cocatalysts, for a broad range of applications.

8.
Acc Chem Res ; 50(2): 218-230, 2017 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-28080028

RESUMO

In most cases of semiconductor quantum dot nanocrystals, the inherent optical and electrochemical properties of these interesting nanomaterials do not translate into expected efficient electrochemiluminescence or electrogenerated chemiluminescence (ECL) because of the surface-state induction effect. Thus, their low ECL efficiencies, while very interesting to explore, limit their applications. As their electrochemistry is not well-defined, insight into their ECL mechanistic details is also limited. Alternatively, gold nanoclusters possess monodispersed sizes with atomic precision, low and well defined HOMO-LUMO energy gaps, and stable optical and electrochemical properties that make them suitable for potential ECL applications. In this Account, we demonstrate strong and sustainable ECL of gold nanoclusters Au25z (i.e., Au25(SR)18z, z = 1-, 0, 1+), Au38(SR)24, and Au144(SR)60, where the ligand SR is 2-phenylethanethiol. By correlation of the optical and electrochemical features of Au25 nanoclusters, a Latimer-type diagram can be constructed to reveal thermodynamic relationships of five oxidation states (Au252+, Au25+, Au250, Au25-, and Au252-) and three excited states (Au25-*, Au250*, and Au25+*). We describe ECL mechanisms and reaction kinetics by means of conventional ECL-voltage curves and novel spooling ECL spectroscopy. Notably, their ECL in the presence of tri-n-propylamine (TPrA), as a coreactant, is attributed to emissions from Au25-* (950 nm, strong), Au250* (890 nm, very strong), and Au25+* (890 nm, very strong), as confirmed by the photoluminescence (PL) spectra of the three Au25 clusters electrogenerated in situ. The ECL emissions are controllable by adjustment of the concentrations of TPrA· and Au25-, Au250, and Au25+ species in the vicinity of the working electrode and ultimately the applied potential. It was determined that the Au25-/TPrA coreactant system should have an ECL efficiency of >50% relative to the Ru(bpy)32+/TPrA, while those of Au250/TPrA and Au25+/TPrA reach 103% and 116%, respectively. Au25-* is the main light emission source for Au25z in the presence of benzoyl peroxide (BPO) as a coreactant, with a relative efficiency of up to 30%. For Au38, BPO leads to the Au38-* excited state, which emits light at 930 nm. In the Au38/TPrA coreactant system, we find that highly efficient light emission at 930 nm is mainly from Au38+* (and also Au383+*), with an efficiency 3.5 times that of the Ru(bpy)32+/TPrA reference. We show that the ECL and PL of the various Au38 charge states, namely, Au382-, Au38-, Au380, Au38+, Au382+, and Au384+, have the same peak wavelength of 930 nm. Finally, we demonstrate ECL with a peak wavelength of 930 nm from the Au144/TPrA coreactant system, which is released from the electrogenerated excited states Au144+* and Au1443+*. In our opinion, these gold nanoclusters represent a new class of effective near-IR ECL emitters, from which applications such as bioimaging, biological testing, and medical diagnosis are anticipated once they are made water-dispersible with hydrophilic capping ligands.

9.
J Am Chem Soc ; 137(35): 11266-9, 2015 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-26308098

RESUMO

Electrochemiluminescence (ECL) of a hybrid system consisting of PbS nanocrystals (NCs) and a BODIPY dye (BDY) capping ligand was discovered to produce highly efficient dual emissions with tri-n-propylamine as a coreactant. By means of spooling ECL spectroscopy, the strong dual ECL emission peaks of 984 and 680 nm were attributed to the PbS and BDY moieties, respectively, and found to be simultaneous during the light evolution and devolution. The ECL of the PbS was enhanced via NC collisions with the electrode and reached an efficiency of 96% relative to that of Ru(bpy)3(2+), which is the highest among the semiconductor NCs.

10.
Chemistry ; 20(46): 15116-21, 2014 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-25263693

RESUMO

Au clusters with protecting organothiolate ligands and core diameters less than 2 nm are molecule-like structures, suitable for catalysis, optoelectronics and biology applications. The spectroscopy and electrochemistry of Au25(0) (Au25[(SCH2CH2Ph)18], SCH2CH2Ph = 2-phenylethanethiol) allowed us to construct a Latimer-type diagram for the first time, which revealed a rich photoelectrochemistry of the cluster and the unique relationship to its various oxidation states and corresponding excited states. The occurrence of cluster electrochemiluminescence (ECL) was examined in the presence of tri-n-propylamine (TPrA) as a co-reactant and was discovered to be in the near-infrared (NIR) region with peak wavelengths of 860, 865, and 960 nm, emitted by Au25(+*), Au25(0*), and Au25(-*), respectively. The light emissions, with an efficiency up to 103% relative to that of the efficient Ru(bpy)3(2+)/TPrA system, depended on the kinetics of the reactions between the electrogenerated TPrA radical and Au25(z) (z = 2+, 1+, 1-, and 2-) in the vicinity of the electrode or the bulk Au25(0). These thermodynamic and kinetic origins were further explored by means of spooling ECL and photoluminescence spectroscopy during a sweep of the potential or at a constant potential applied to the working electrode. NIR-ECL emissions of the cluster can be tuned in wavelength and intensity by adjusting the applied potential and TPrA concentration based on the above discoveries.

11.
Chemistry ; 20(23): 7037-47, 2014 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-24806828

RESUMO

A series of polychalcogenotrimethylsilane complexes Ar(CH2ESiMe3)n, (Ar = aryl; E = S, Se; n = 2, 3, and 4) can be prepared from the corresponding polyorganobromide and M[ESiMe3] (M = Na, Li). These represent the first examples of the incorporation of such a large number of reactive -ESiMe3 moieties onto an organic molecular framework. They are shown to be convenient reagents for the preparation of the polyferrocenylseleno- and thioesters from ferrocenoyl chloride. The synthesis, structures, and spectroscopic properties of the new silyl chalcogen complexes 1,4-(Me3SiECH2)2(C6Me4) (E = S, 1; E = Se, 2), 1,3,5-(Me3SiECH2)3(C6Me3) (E = S, 3; E = Se, 4) and 1,2,4,5-(Me3SiECH2)4(C6H2) (E = S, 5; E = Se, 6) and the polyferrocenyl chalcogenoesters [1,4-{FcC(O)ECH2}2(C6Me4)] (E = S, 7; E = Se, 8), [1,3,5-{FcC(O)ECH2}3(C6Me3)] (E = S, 9; E = Se, 10) and [1,2,4,5-{FcC(O)ECH2}4(C6H2)] (E = S, 11 illustrated; E = Se, 12) are reported. The new polysilylated reagents and polyferrocenyl chalcogenoesters have been characterized by multinuclear NMR spectroscopy ((1)H, (13)C, (77)Se), electrospray ionization mass spectrometry and, for complexes 1, 2, 3, 4, 7, 8, and 11, single-crystal X-ray diffraction. The cyclic voltammograms of complexes 7-11 are presented.

12.
Nanotechnology ; 25(13): 135601, 2014 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-24583600

RESUMO

We demonstrate a facile and cost effective method to obtain gold nanoparticles on graphene by dispersing Au144 molecular nanoclusters by spin coating them in thin layers on graphene-based films and subsequent annealing in a controlled atmosphere. The graphene-based thin films used for these experiments are prepared by solvent-assisted exfoliation of graphite in water in the presence of ribonucleic acid as a surfactant and by subsequent vacuum filtration of the resulting graphene-containing suspensions. Not only is this method easily reproducible, but it leads to gold nanoparticles that are not dependent in size on the number of graphene layers beneath them. This is a distinct advantage over other methods. Plasmonic effects have been detected in our gold nanoparticle-decorated graphene layers, indicating that these thin films may be useful in applications such as plasmonic solar cells and optical memory devices.

13.
Langmuir ; 29(21): 6460-6, 2013 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-23472738

RESUMO

UV curing (photopolymerization) is ubiquitous in many facets of industry ranging from the application of paints, pigments, and barrier coatings all the way to fiber optic cable production. To date no reports have focused on polymerizable phosphonium salts under UV irradiation, and despite this dearth of examples, they potentially offer numerous substantial advantages to traditional UV formulation components. We have generated a highly novel coating based on UV-curable trialkylacryloylphosphonium salts that allow for the fast (seconds) and straightforward preparation of ion-exchange surfaces amenable to a roll-to-roll process. We have quantified the surface charges and exploited their accessibility by employing these surfaces in an anion exchange experiment by which [Au25L18](-) (L = SCH2CH2Ph) nanocrystals can be assembled into the solid state. This unprecedented application of such surfaces offers a paradigm shift in the emerging chemistry of Au25 research where the nanocrystals remain single and intact and where the integrity of the cluster and its solution photophysical properties are resilient in the solid state. The specific loading of [Au25L18](-) on the substrates has been determined and the completely reversible loading and unloading of intact nanocrystals to and from the surface has been established. In the solid state, the assembly has an incredible mechanical resiliency, where the surface remains undamaged even when subjected to repeated Scotch tests.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Organofosfonatos/química , Polímeros/química , Ânions/química , Organofosfonatos/síntese química , Processos Fotoquímicos , Polímeros/síntese química , Raios Ultravioleta
14.
Inorg Chem ; 52(12): 6798-805, 2013 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-23705664

RESUMO

The redox-active diphosphine ligand 1,1'-bis(diphenylphosphino)ferrocene (dppf) has been used to stabilize the copper(I) chalcogenide clusters [Cu12(µ4-S)6(µ-dppf)4] (1), [Cu8(µ4-Se)4(µ-dppf)3] (2), [Cu4(µ4-Te)(µ4-η(2)-Te2)(µ-dppf)2] (3), and [Cu12(µ5-Te)4(µ8-η(2)-Te2)2(µ-dppf)4] (4), prepared by the reaction of the copper(I) acetate coordination complex (dppf)CuOAc (5) with 0.5 equiv of E(SiMe3)2 (E = S, Se, Te). Single-crystal X-ray analyses of complexes 1-4 confirm the presence of {Cu(2x)E(x)} cores stabilized by dppf ligands on their surfaces, where the bidentate ligands adopt bridging coordination modes. The redox chemistry of cluster 1 was examined using cyclic voltammetry and compared to the electrochemistry of the free ligand dppf and the corresponding copper(I) acetate coordination complex 5. Cluster 1 shows the expected consecutive oxidations of the ferrocene moieties, Cu(I) centers, and phosphine of the dppf ligand.

15.
J Chem Phys ; 138(2): 024305, 2013 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-23320681

RESUMO

In this study, we investigated the unpaired electrons and singly occupied molecular orbitals (SOMO) of positively charged Au(25) molecular clusters using solid-state electron paramagnetic resonance (EPR). The EPR powder spectra of the positively charged (Au(25) (+)) and neutral (Au(25) (0)) species of Au(25) are discussed and compared. Our study demonstrates that Au(25) (+) is paramagnetic with a SOMO that is mostly localized about the central gold atom in the core of the molecule and possesses a strong p-type atomic character. The unpaired electron spin is demonstrated to strongly interact with the nuclear spins from other (197)Au nuclei in the core of Au(25) (+) molecules and the hyperfine tensor describing such interaction was extracted from the comparison of the EPR spectra with quantum mechanical simulations assuming an anisotropic structure of the core. Our simulations suggest that the core of Au(25) (+) molecular clusters is more distorted than in the corresponding neutral counterpart. They also confirm previous hypotheses suggesting that the icosahedral core of Au(25) (+) experiences contraction with decreasing temperature.

16.
ACS Appl Mater Interfaces ; 15(40): 47168-47176, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37754848

RESUMO

Particulate bismuth vanadate (BiVO4) has attracted considerable interest as a promising photo(electro)catalyst for visible-light-driven water oxidation; however, overall water splitting (OWS) has been difficult to attain because its conduction band is too positive for efficient hydrogen evolution. Using photoscanning electrochemical microscopy (photo-SECM) with a chemically modified nanotip, we visualized for the first time the OWS at a single truncated bipyramidal microcrystal of phosphorus-doped BiVO4. The tip simultaneously served as a light guide to illuminate the photocatalyst and an electrochemical nanoprobe to observe and quantitatively measure local oxygen and hydrogen fluxes. The obtained current patterns for both O2 and H2 agree well with the accumulation of photogenerated electrons and holes on {010} basal and {110} lateral facets, respectively. The developed experimental approach is an important step toward nanoelectrochemical mapping of the activity of photocatalyst particles at the subfacet level.

17.
J Am Chem Soc ; 134(37): 15205-8, 2012 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-22928664

RESUMO

The electrochemistry, near-infrared photoluminescence (NIR-PL) spectroscopy, and electrogenerated chemiluminescence (ECL) of Au(25)(SC(2)H(4)Ph)(18)(+)C(6)F(5)CO(2)(-) (Au(25)(+)) clusters were investigated. For the first time, NIR-ECL emission was observed in both annihilation and coreactant paths. Our newly developed spooling spectroscopy was employed during the ECL evolution and devolution processes along with explicit NIR-PL spectroscopy to elucidate light generation mechanisms. It was discovered that the electronic relaxation of the Au(25)(-) excited state to the ground state plays a key role in giving off ECL at 893 nm, while intermediate, strong, and weak NIR-PL emissions at 719/820, 857, and 1080 nm can be attributed to the excited states higher than the HOMO-LUMO gap, across the HOMO-LUMO gap, and of semi-rings, respectively.

18.
Nat Protoc ; 16(4): 2109-2130, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33731962

RESUMO

One of the most widely used techniques to generate light through an efficient electron transfer is called electrochemiluminescence, or electrogenerated chemiluminescence (ECL). ECL mechanisms can be explored via 'spooling spectroscopy' in which individual ECL spectra showing emitted light are collected continuously during a potentiodynamic course. The obtained spectra are spooled together and plotted along the applied potential axis; because the potential sweep occurs at a defined rate, this axis is directly proportional to time. Any changes in the emission spectra can be correlated to the corresponding potentials and/or times, leading to a deeper understanding of the mechanism for light generation-information that can be used for efficiently maximizing ECL intensities. The formation of intermediates and excited states can also be tracked, which is crucial to interrogating and drawing electron transfer pathways (i.e., understanding the chemical reaction mechanism). Spooling spectroscopy is not limited to ECL; we also include instructions for the use of related methodologies, such as spooling photoluminescence spectroscopy during an electrolysis procedure, which can be easily set up. The total time required to complete the protocol is ~49 h, from making electrodes and an ECL cell, fabricating light-tight housing, to setting up instruments. Preparing the lab for an individual experiment (making an electrolyte solution of a targeted luminophore, cooling down the CCD camera, calibrating the spectrometer and surveying electrochemistry) takes ~1 h 15 min, and performing the spooling ECL spectroscopy experiment itself requires ~10 min.


Assuntos
Eletroquímica/métodos , Luminescência , Análise Espectral/métodos , Eletrodos , Platina/química
19.
Chem Sci ; 12(43): 14540-14545, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34881005

RESUMO

Herein, we report for the first time single Au38 nanocluster reaction events of highly efficient electrochemiluminescence (ECL) with tri-n-propylamine radicals as a reductive co-reactant at the surface of an ultramicroelectrode (UME). The statistical analyses of individual reactions confirm stochastic single ones influenced by the applied potential.

20.
Front Chem ; 8: 580033, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33244465

RESUMO

Quantum dots (QDs) have been established in our daily life, for instance, in display screens and light-harvesting technologies, mainly owing to their peculiar opto-electronic features. However, toxicity of inorganic QDs, such as CdSe, CdTe, and perovskites, limits their applications in biological environments for medical diagnosis and bio-imaging purposes. A new generation of QDs called carbon quantum dots (CQDs) have been progressing rapidly over the past few years. CQDs have become as popular as other carbon-based nanomaterials such as carbon nanotubes (CNTs), due to their ease of preparation, ultra-small size, biocompatibility, and bright luminescence.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA