Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Stem Cell Reports ; 15(4): 855-868, 2020 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-32976764

RESUMO

Cerebral organoids (COs) are rapidly accelerating the rate of translational neuroscience based on their potential to model complex features of the developing human brain. Several studies have examined the electrophysiological and neural network features of COs; however, no study has comprehensively investigated the developmental trajectory of electrophysiological properties in whole-brain COs and correlated these properties with developmentally linked morphological and cellular features. Here, we profiled the neuroelectrical activities of COs over the span of 5 months with a multi-electrode array platform and observed the emergence and maturation of several electrophysiologic properties, including rapid firing rates and network bursting events. To complement these analyses, we characterized the complex molecular and cellular development that gives rise to these mature neuroelectrical properties with immunohistochemical and single-cell transcriptomic analyses. This integrated approach highlights the value of COs as an emerging model system of human brain development and neurological disease.


Assuntos
Diferenciação Celular , Cérebro/citologia , Fenômenos Eletrofisiológicos , Organoides/citologia , Organoides/fisiologia , Linhagem Celular , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Microeletrodos , Neuroglia/citologia , Neurônios/citologia , Neurônios/metabolismo , Receptores de Fator de Crescimento Neural/metabolismo , Transdução de Sinais , Análise de Célula Única , Sinapses/fisiologia
2.
Genetics ; 173(4): 1909-17, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16751660

RESUMO

Protein kinases mediate much of the signal transduction in eukaryotic cells and defects in kinase function are associated with a variety of human diseases. To understand and correct these defects, we will need to identify the physiologically relevant substrates of these enzymes. The work presented here describes a novel approach to this identification process for the cAMP-dependent protein kinase (PKA) in Saccharomyces cerevisiae. This approach takes advantage of two catalytically inactive PKA variants, Tpk1K336A/H338A and Tpk1R324A, that exhibit a stable binding to their substrates. Most protein kinases, including the wild-type PKA, associate with substrates with a relatively low affinity. The binding observed here was specific to substrates and was dependent upon PKA residues known to be important for interactions with peptide substrates. The general utility of this approach was demonstrated by the ability to identify both previously described and novel PKA substrates in S. cerevisiae. Interestingly, the positions of the residues altered in these variants implicated a particular region within the PKA kinase domain, corresponding to subdomain XI, in the binding and/or release of protein substrates. Moreover, the high conservation of the residues altered and, in particular, the invariant nature of the R324 position suggest that this approach might be generally applicable to other protein kinases.


Assuntos
Substituição de Aminoácidos , Proteínas Quinases Dependentes de AMP Cíclico/genética , Mutação Puntual , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Peptídeos/genética , Peptídeos/metabolismo , Estrutura Terciária de Proteína/genética , Saccharomyces cerevisiae/enzimologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Especificidade por Substrato/genética
3.
Genetics ; 165(3): 1059-70, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-14668364

RESUMO

The Ras signaling pathway in Saccharomyces cerevisiae controls cell growth via the cAMP-dependent protein kinase, PKA. Recent work has indicated that these effects on growth are due, in part, to the regulation of activities associated with the C-terminal domain (CTD) of the largest subunit of RNA polymerase II. However, the precise target of these Ras effects has remained unknown. This study suggests that Ras/PKA activity regulates the elongation step of the RNA polymerase II transcription process. Several lines of evidence indicate that Spt5p in the Spt4p/Spt5p elongation factor is the likely target of this control. First, the growth of spt4 and spt5 mutants was found to be very sensitive to changes in Ras/PKA signaling activity. Second, mutants with elevated levels of Ras activity shared a number of specific phenotypes with spt5 mutants and vice versa. Finally, Spt5p was efficiently phosphorylated by PKA in vitro. Altogether, the data suggest that the Ras/PKA pathway might be directly targeting a component of the elongating polymerase complex and that this regulation is important for the normal control of yeast cell growth. These data point out the interesting possibility that signal transduction pathways might directly influence the elongation step of RNA polymerase II transcription.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas Nucleares/metabolismo , RNA Polimerase II/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Fatores de Elongação da Transcrição/metabolismo , Proteínas ras/metabolismo , Mutação , Fosforilação , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética
4.
Clin Vaccine Immunol ; 17(11): 1753-62, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20739500

RESUMO

Anthrax toxin (ATx) is composed of the binary exotoxins lethal toxin (LTx) and edema toxin (ETx). They have separate effector proteins (edema factor and lethal factor) but have the same binding protein, protective antigen (PA). PA is the primary immunogen in the current licensed vaccine anthrax vaccine adsorbed (AVA [BioThrax]). AVA confers protective immunity by stimulating production of ATx-neutralizing antibodies, which could block the intoxication process at several steps (binding of PA to the target cell surface, furin cleavage, toxin complex formation, and binding/translocation of ATx into the cell). To evaluate ATx neutralization by anti-AVA antibodies, we developed two low-temperature LTx neutralization activity (TNA) assays that distinguish antibody blocking before and after binding of PA to target cells (noncomplexed [NC] and receptor-bound [RB] TNA assays). These assays were used to investigate anti-PA antibody responses in AVA-vaccinated rhesus macaques (Macaca mulatta) that survived an aerosol challenge with Bacillus anthracis Ames spores. Results showed that macaque anti-AVA sera neutralized LTx in vitro, even when PA was prebound to cells. Neutralization titers in surviving versus nonsurviving animals and between prechallenge and postchallenge activities were highly correlated. These data demonstrate that AVA stimulates a myriad of antibodies that recognize multiple neutralizing epitopes and confirm that change, loss, or occlusion of epitopes after PA is processed from PA83 to PA63 at the cell surface does not significantly affect in vitro neutralizing efficacy. Furthermore, these data support the idea that the full-length PA83 monomer is an appropriate immunogen for inclusion in next-generation anthrax vaccines.


Assuntos
Vacinas contra Antraz/imunologia , Antraz/veterinária , Anticorpos Antibacterianos/sangue , Anticorpos Neutralizantes/sangue , Toxinas Bacterianas/antagonistas & inibidores , Doenças dos Primatas/prevenção & controle , Animais , Antraz/imunologia , Antraz/mortalidade , Antraz/prevenção & controle , Vacinas contra Antraz/administração & dosagem , Antígenos de Bactérias/imunologia , Toxinas Bacterianas/imunologia , Modelos Animais de Doenças , Macaca mulatta , Testes de Neutralização , Doenças dos Primatas/imunologia , Doenças dos Primatas/mortalidade , Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA