Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 234
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 184(6): 1545-1560, 2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33691137

RESUMO

Sustaining neuronal proteostasis during the course of our life is a central aspect required for brain function. The dynamic nature of synaptic composition and abundance is a requisite to drive cognitive and motor processes involving a tight control of many aspects of protein biosynthesis and degradation. Through the concerted action of specialized stress sensors, the proteostasis network monitors and limits the accumulation of damaged, misfolded, or aggregated proteins. These stress pathways signal to the cytosol and nucleus to reprogram gene expression, enabling adaptive programs to recover cell function. During aging, the activity of the proteostasis network declines, which may increase the risk of accumulating abnormal protein aggregates, a hallmark of most neurodegenerative diseases. Here, I discuss emerging concepts illustrating the functional significance of adaptive signaling pathways to normal brain physiology and their contribution to age-related disorders. Pharmacological and gene therapy strategies to intervene and boost proteostasis are expected to extend brain healthspan and ameliorate disease states.


Assuntos
Adaptação Fisiológica , Encéfalo/fisiologia , Saúde Mental , Proteostase , Animais , Humanos , Transdução de Sinais , Estresse Fisiológico
2.
Cell ; 179(6): 1246-1248, 2019 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-31778650

RESUMO

Cells are protected from endoplasmic reticulum stress through the unfolded protein response (UPR). In this issue of Cell, Schinzel, Higuchi-Sanabria, Shalem et al., identify a mechanism that helps cells cope with ER stress but is independent of canonical UPR activation, instead involving the extracellular matrix hyaluronidase, TMEM2, as a signaling mediator.


Assuntos
Hialuronoglucosaminidase , Longevidade , Retículo Endoplasmático , Estresse do Retículo Endoplasmático , Homeostase , Resposta a Proteínas não Dobradas
3.
Nat Rev Mol Cell Biol ; 21(8): 421-438, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32457508

RESUMO

Cellular stress induced by the abnormal accumulation of unfolded or misfolded proteins at the endoplasmic reticulum (ER) is emerging as a possible driver of human diseases, including cancer, diabetes, obesity and neurodegeneration. ER proteostasis surveillance is mediated by the unfolded protein response (UPR), a signal transduction pathway that senses the fidelity of protein folding in the ER lumen. The UPR transmits information about protein folding status to the nucleus and cytosol to adjust the protein folding capacity of the cell or, in the event of chronic damage, induce apoptotic cell death. Recent advances in the understanding of the regulation of UPR signalling and its implications in the pathophysiology of disease might open new therapeutic avenues.


Assuntos
Estresse do Retículo Endoplasmático/fisiologia , Resposta a Proteínas não Dobradas/genética , Resposta a Proteínas não Dobradas/fisiologia , Animais , Apoptose/fisiologia , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/fisiologia , Humanos , Neoplasias/metabolismo , Dobramento de Proteína , Proteínas/metabolismo , Transdução de Sinais
4.
Cell ; 163(4): 790-1, 2015 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-26544930

RESUMO

Pejvakin (PJVK), a protein originally identified in Persian families with sensorineural hearing loss, regulates peroxisomal dynamics and the antioxidant defense triggered by noise exposure in hair cells and auditory neurons of the inner ear. These findings bring peroxisomes to the forefront of noise-induced hearing loss research.


Assuntos
Perda Auditiva Provocada por Ruído/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Peroxissomos/metabolismo , Proteínas/metabolismo , Animais , Humanos
6.
EMBO J ; 41(2): e105531, 2022 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34904718

RESUMO

Recessive gene mutations underlie many developmental disorders and often lead to disabling neurological problems. Here, we report identification of a homozygous c.170G>A (p.Cys57Tyr or C57Y) mutation in the gene coding for protein disulfide isomerase A3 (PDIA3, also known as ERp57), an enzyme that catalyzes formation of disulfide bonds in the endoplasmic reticulum, to be associated with syndromic intellectual disability. Experiments in zebrafish embryos show that PDIA3C57Y expression is pathogenic and causes developmental defects such as axonal disorganization as well as skeletal abnormalities. Expression of PDIA3C57Y in the mouse hippocampus results in impaired synaptic plasticity and memory consolidation. Proteomic and functional analyses reveal that PDIA3C57Y expression leads to dysregulation of cell adhesion and actin cytoskeleton dynamics, associated with altered integrin biogenesis and reduced neuritogenesis. Biochemical studies show that PDIA3C57Y has decreased catalytic activity and forms disulfide-crosslinked aggregates that abnormally interact with chaperones in the endoplasmic reticulum. Thus, rare disease gene variant can provide insight into how perturbations of neuronal proteostasis can affect the function of the nervous system.


Assuntos
Deficiências do Desenvolvimento/genética , Retículo Endoplasmático/metabolismo , Isomerases de Dissulfetos de Proteínas/genética , Proteostase , Adolescente , Adulto , Animais , Axônios/metabolismo , Axônios/patologia , Adesão Celular , Células Cultivadas , Criança , Citoesqueleto/metabolismo , Deficiências do Desenvolvimento/metabolismo , Deficiências do Desenvolvimento/patologia , Feminino , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Integrinas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutação de Sentido Incorreto , Crescimento Neuronal , Plasticidade Neuronal , Linhagem , Isomerases de Dissulfetos de Proteínas/metabolismo , Peixe-Zebra
7.
EMBO J ; 41(22): e111952, 2022 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-36314651

RESUMO

Aging is a major risk factor to develop neurodegenerative diseases and is associated with decreased buffering capacity of the proteostasis network. We investigated the significance of the unfolded protein response (UPR), a major signaling pathway activated to cope with endoplasmic reticulum (ER) stress, in the functional deterioration of the mammalian brain during aging. We report that genetic disruption of the ER stress sensor IRE1 accelerated age-related cognitive decline. In mouse models, overexpressing an active form of the UPR transcription factor XBP1 restored synaptic and cognitive function, in addition to reducing cell senescence. Proteomic profiling of hippocampal tissue showed that XBP1 expression significantly restore changes associated with aging, including factors involved in synaptic function and pathways linked to neurodegenerative diseases. The genes modified by XBP1 in the aged hippocampus where also altered. Collectively, our results demonstrate that strategies to manipulate the UPR in mammals may help sustain healthy brain aging.


Assuntos
Envelhecimento , Encéfalo , Proteínas Serina-Treonina Quinases , Resposta a Proteínas não Dobradas , Proteína 1 de Ligação a X-Box , Animais , Camundongos , Envelhecimento/genética , Encéfalo/metabolismo , Estresse do Retículo Endoplasmático/genética , Proteínas Serina-Treonina Quinases/genética , Proteômica , Transdução de Sinais/fisiologia , Proteína 1 de Ligação a X-Box/genética , Proteína 1 de Ligação a X-Box/metabolismo
8.
Mol Cell ; 69(2): 169-181, 2018 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-29107536

RESUMO

The secretory capacity of a cell is constantly challenged by physiological demands and pathological perturbations. To adjust and match the protein-folding capacity of the endoplasmic reticulum (ER) to changing secretory needs, cells employ a dynamic intracellular signaling pathway known as the unfolded protein response (UPR). Homeostatic activation of the UPR enforces adaptive programs that modulate and augment key aspects of the entire secretory pathway, whereas maladaptive UPR outputs trigger apoptosis. Here, we discuss recent advances into how the UPR integrates information about the intensity and duration of ER stress stimuli in order to control cell fate. These findings are timely and significant because they inform an evolving mechanistic understanding of a wide variety of human diseases, including diabetes mellitus, neurodegeneration, and cancer, thus opening up the potential for new therapeutic modalities to treat these diverse diseases.


Assuntos
Linhagem da Célula/fisiologia , Resposta a Proteínas não Dobradas/fisiologia , Fator 6 Ativador da Transcrição/metabolismo , Animais , Apoptose , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático , Endorribonucleases/metabolismo , Homeostase , Humanos , Modelos Biológicos , Dobramento de Proteína , Proteínas Serina-Treonina Quinases/metabolismo , Via Secretória/fisiologia , Transdução de Sinais , eIF-2 Quinase/metabolismo
9.
Mol Cell ; 69(2): 238-252.e7, 2018 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-29351844

RESUMO

Maintenance of endoplasmic reticulum (ER) proteostasis is controlled by a dynamic signaling network known as the unfolded protein response (UPR). IRE1α is a major UPR transducer, determining cell fate under ER stress. We used an interactome screening to unveil several regulators of the UPR, highlighting the ER chaperone Hsp47 as the major hit. Cellular and biochemical analysis indicated that Hsp47 instigates IRE1α signaling through a physical interaction. Hsp47 directly binds to the ER luminal domain of IRE1α with high affinity, displacing the negative regulator BiP from the complex to facilitate IRE1α oligomerization. The regulation of IRE1α signaling by Hsp47 is evolutionarily conserved as validated using fly and mouse models of ER stress. Hsp47 deficiency sensitized cells and animals to experimental ER stress, revealing the significance of Hsp47 to global proteostasis maintenance. We conclude that Hsp47 adjusts IRE1α signaling by fine-tuning the threshold to engage an adaptive UPR.


Assuntos
Endorribonucleases/metabolismo , Proteínas de Choque Térmico HSP47/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Células COS , Chlorocebus aethiops , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático/fisiologia , Proteínas de Choque Térmico HSP47/fisiologia , Humanos , Camundongos , Chaperonas Moleculares/metabolismo , Transdução de Sinais , Estresse Fisiológico , Fatores de Transcrição/metabolismo , Resposta a Proteínas não Dobradas
10.
Circulation ; 150(13): 1010-1029, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-38836349

RESUMO

BACKGROUND: Cardiomyocyte growth is coupled with active protein synthesis, which is one of the basic biological processes in living cells. However, it is unclear whether the unfolded protein response transducers and effectors directly take part in the control of protein synthesis. The connection between critical functions of the unfolded protein response in cellular physiology and requirements of multiple processes for cell growth prompted us to investigate the role of the unfolded protein response in cell growth and underlying molecular mechanisms. METHODS: Cardiomyocyte-specific inositol-requiring enzyme 1α (IRE1α) knockout and overexpression mouse models were generated to explore its function in vivo. Neonatal rat ventricular myocytes were isolated and cultured to evaluate the role of IRE1α in cardiomyocyte growth in vitro. Mass spectrometry was conducted to identify novel interacting proteins of IRE1α. Ribosome sequencing and polysome profiling were performed to determine the molecular basis for the function of IRE1α in translational control. RESULTS: We show that IRE1α is required for cell growth in neonatal rat ventricular myocytes under prohypertrophy treatment and in HEK293 cells in response to serum stimulation. At the molecular level, IRE1α directly interacts with eIF4G and eIF3, 2 critical components of the translation initiation complex. We demonstrate that IRE1α facilitates the formation of the translation initiation complex around the endoplasmic reticulum and preferentially initiates the translation of transcripts with 5' terminal oligopyrimidine motifs. We then reveal that IRE1α plays an important role in determining the selectivity and translation of these transcripts. We next show that IRE1α stimulates the translation of epidermal growth factor receptor through an unannotated terminal oligopyrimidine motif in its 5' untranslated region. We further demonstrate a physiological role of IRE1α-governed protein translation by showing that IRE1α is essential for cardiomyocyte growth and cardiac functional maintenance under hemodynamic stress in vivo. CONCLUSIONS: These studies suggest a noncanonical, essential role of IRE1α in orchestrating protein synthesis, which may have important implications in cardiac hypertrophy in response to pressure overload and general cell growth under other physiological and pathological conditions.


Assuntos
Endorribonucleases , Miócitos Cardíacos , Proteínas Serina-Treonina Quinases , Animais , Miócitos Cardíacos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Endorribonucleases/metabolismo , Endorribonucleases/genética , Humanos , Ratos , Células HEK293 , Biossíntese de Proteínas , Camundongos , Camundongos Knockout , Cardiomegalia/metabolismo , Cardiomegalia/genética , Cardiomegalia/patologia , Resposta a Proteínas não Dobradas , Células Cultivadas , Animais Recém-Nascidos , Fator de Iniciação Eucariótico 4G/metabolismo , Fator de Iniciação Eucariótico 4G/genética , Ratos Sprague-Dawley , Complexos Multienzimáticos
11.
Hepatology ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38626349

RESUMO

HCC is the most frequent primary liver cancer with an extremely poor prognosis and often develops on preset of chronic liver diseases. Major risk factors for HCC include metabolic dysfunction-associated steatohepatitis, a complex multifactorial condition associated with abnormal endoplasmic reticulum (ER) proteostasis. To cope with ER stress, the unfolded protein response engages adaptive reactions to restore the secretory capacity of the cell. Recent advances revealed that ER stress signaling plays a critical role in HCC progression. Here, we propose that chronic ER stress is a common transversal factor contributing to the transition from liver disease (risk factor) to HCC. Interventional strategies to target the unfolded protein response in HCC, such as cancer therapy, are also discussed.

12.
Mol Cell Proteomics ; 22(5): 100534, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36958627

RESUMO

Huntington's disease (HD) is a neurodegenerative disease caused by a CAG repeat expansion in the Huntingtin (HTT) gene. The resulting polyglutamine (polyQ) tract alters the function of the HTT protein. Although HTT is expressed in different tissues, the medium-spiny projection neurons (MSNs) in the striatum are particularly vulnerable in HD. Thus, we sought to define the proteome of human HD patient-derived MSNs. We differentiated HD72-induced pluripotent stem cells and isogenic controls into MSNs and carried out quantitative proteomic analysis. Using data-dependent acquisitions with FAIMS for label-free quantification on the Orbitrap Lumos mass spectrometer, we identified 6323 proteins with at least two unique peptides. Of these, 901 proteins were altered significantly more in the HD72-MSNs than in isogenic controls. Functional enrichment analysis of upregulated proteins demonstrated extracellular matrix and DNA signaling (DNA replication pathway, double-strand break repair, G1/S transition) with the highest significance. Conversely, processes associated with the downregulated proteins included neurogenesis-axogenesis, the brain-derived neurotrophic factor-signaling pathway, Ephrin-A:EphA pathway, regulation of synaptic plasticity, triglyceride homeostasis cholesterol, plasmid lipoprotein particle immune response, interferon-γ signaling, immune system major histocompatibility complex, lipid metabolism, and cellular response to stimulus. Moreover, proteins involved in the formation and maintenance of axons, dendrites, and synapses (e.g., septin protein members) were dysregulated in HD72-MSNs. Importantly, lipid metabolism pathways were altered, and using quantitative image analysis, we found that lipid droplets accumulated in the HD72-MSN, suggesting a deficit in the turnover of lipids possibly through lipophagy. Our proteomics analysis of HD72-MSNs identified relevant pathways that are altered in MSNs and confirm current and new therapeutic targets for HD.


Assuntos
Doença de Huntington , Doenças Neurodegenerativas , Humanos , Animais , Neurônios/metabolismo , Neurônios Espinhosos Médios , Doença de Huntington/metabolismo , Doenças Neurodegenerativas/metabolismo , Gotículas Lipídicas/metabolismo , Proteômica , Corpo Estriado/metabolismo , Modelos Animais de Doenças
13.
J Cell Sci ; 135(23)2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36448461

RESUMO

The appreciation of the importance of interorganelle contacts has steadily increased over the past decades. Advances in imaging, molecular biology and bioinformatic techniques allowed the discovery of new mechanisms involved in the interaction and communication between organelles, providing novel insights into the inner works of a cell. In this Review, with the mitochondria under the spotlight, we discuss the most recent findings on the mechanisms mediating the communication between organelles, focusing on Ca2+ signaling, lipid exchange, cell death and stress responses. Notably, we introduce a new integrative perspective to signaling networks that is regulated by interorganelle interactions - the mitochondria-associated niches - focusing on the link between the molecular determinants of contact sites and their functional outputs, rather than simply physical and structural communication. In addition, we highlight the neuropathological and metabolic implications of alterations in mitochondria-associated niches and outline how this concept might improve our understanding of multi-organelle interactions.


Assuntos
Mitocôndrias , Membranas Mitocondriais , Morte Celular , Transdução de Sinais , Biologia Computacional
14.
Cell Tissue Res ; 395(1): 21-38, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38015266

RESUMO

Nothobranchius furzeri is emerging as an exciting vertebrate organism in the field of biomedicine, developmental biology and ecotoxicology research. Its short generation time, compressed lifespan and accelerated ageing make it a versatile model for longitudinal studies with high traceability. Although in recent years the use of this model has increased enormously, there is still little information on the anatomy, morphology and histology of its main organs. In this paper, we present a description of the digestive system of N. furzeri, with emphasis on the intestine. We note that the general architecture of the intestinal tissue is shared with other vertebrates, and includes a folding mucosa, an outer muscle layer and a myenteric plexus. By immunohistochemical analysis, we reveal that the mucosa harbours the same type of epithelial cells observed in mammals, including enterocytes, goblet cells and enteroendocrine cells, and that the myenteric neurons express neurotransmitters common to other species, such as serotonin, substance P and tyrosine hydroxylase. In addition, we detect the presence of a proliferative compartment at the base of the intestinal folds. The description of the normal intestinal morphology provided here constitutes a baseline information to contrast with tissue alterations in future lines of research assessing pathologies, ageing-related diseases or damage caused by toxic agents.


Assuntos
Envelhecimento , Intestinos , Animais , Mamíferos
15.
Nat Rev Mol Cell Biol ; 13(2): 89-102, 2012 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-22251901

RESUMO

Protein-folding stress at the endoplasmic reticulum (ER) is a salient feature of specialized secretory cells and is also involved in the pathogenesis of many human diseases. ER stress is buffered by the activation of the unfolded protein response (UPR), a homeostatic signalling network that orchestrates the recovery of ER function, and failure to adapt to ER stress results in apoptosis. Progress in the field has provided insight into the regulatory mechanisms and signalling crosstalk of the three branches of the UPR, which are initiated by the stress sensors protein kinase RNA-like ER kinase (PERK), inositol-requiring protein 1α (IRE1α) and activating transcription factor 6 (ATF6). In addition, novel physiological outcomes of the UPR that are not directly related to protein-folding stress, such as innate immunity, metabolism and cell differentiation, have been revealed.


Assuntos
Apoptose/fisiologia , Diferenciação Celular/fisiologia , Proliferação de Células , Estresse do Retículo Endoplasmático/fisiologia , Resposta a Proteínas não Dobradas/fisiologia , Adaptação Biológica/genética , Adaptação Biológica/fisiologia , Animais , Apoptose/genética , Morte Celular/genética , Morte Celular/fisiologia , Diferenciação Celular/genética , Sobrevivência Celular/genética , Sobrevivência Celular/fisiologia , Estresse do Retículo Endoplasmático/genética , Humanos , Resposta a Proteínas não Dobradas/genética
16.
Mol Ther ; 31(7): 2240-2256, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37016577

RESUMO

Alteration in the buffering capacity of the proteostasis network is an emerging feature of Alzheimer's disease (AD), highlighting the occurrence of endoplasmic reticulum (ER) stress. The unfolded protein response (UPR) is the main adaptive pathway to cope with protein folding stress at the ER. Inositol-requiring enzyme-1 (IRE1) operates as a central ER stress sensor, enabling the establishment of adaptive and repair programs through the control of the expression of the transcription factor X-box binding protein 1 (XBP1). To artificially enforce the adaptive capacity of the UPR in the AD brain, we developed strategies to express the active form of XBP1 in the brain. Overexpression of XBP1 in the nervous system using transgenic mice reduced the load of amyloid deposits and preserved synaptic and cognitive function. Moreover, local delivery of XBP1 into the hippocampus of an 5xFAD mice using adeno-associated vectors improved different AD features. XBP1 expression corrected a large proportion of the proteomic alterations observed in the AD model, restoring the levels of several synaptic proteins and factors involved in actin cytoskeleton regulation and axonal growth. Our results illustrate the therapeutic potential of targeting UPR-dependent gene expression programs as a strategy to ameliorate AD features and sustain synaptic function.


Assuntos
Doença de Alzheimer , Animais , Camundongos , Doença de Alzheimer/genética , Doença de Alzheimer/terapia , Doença de Alzheimer/metabolismo , Estresse do Retículo Endoplasmático/genética , Camundongos Transgênicos , Proteômica , Proteostase/genética , Transdução de Sinais/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Resposta a Proteínas não Dobradas/genética
17.
J Biol Chem ; 298(7): 102087, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35654139

RESUMO

Protein disulfide isomerases (PDIs) constitute a family of oxidoreductases promoting redox protein folding and quality control in the endoplasmic reticulum. PDIs catalyze disulfide bond formation, isomerization, and reduction, operating in concert with molecular chaperones to fold secretory cargoes in addition to directing misfolded proteins to be refolded or degraded. Importantly, PDIs are emerging as key components of the proteostasis network, integrating protein folding status with central surveillance mechanisms to balance proteome stability according to cellular needs. Recent advances in the field driven by the generation of new mouse models, human genetic studies, and omics methodologies, in addition to interventions using small molecules and gene therapy, have revealed the significance of PDIs to the physiology of the nervous system. PDIs are also implicated in diverse pathologies, ranging from neurodevelopmental conditions to neurodegenerative diseases and traumatic injuries. Here, we review the principles of redox protein folding in the ER with a focus on current evidence linking genetic mutations and biochemical alterations to PDIs in the etiology of neurological conditions.


Assuntos
Retículo Endoplasmático , Sistema Nervoso , Isomerases de Dissulfetos de Proteínas , Proteostase , Animais , Retículo Endoplasmático/metabolismo , Humanos , Camundongos , Sistema Nervoso/metabolismo , Doenças Neurodegenerativas , Oxirredução , Isomerases de Dissulfetos de Proteínas/metabolismo , Dobramento de Proteína
18.
J Cell Sci ; 133(15)2020 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-32788208

RESUMO

Different perturbations alter the function of the endoplasmic reticulum (ER), resulting in the accumulation of misfolded proteins in its lumen, a condition termed ER stress. To restore ER proteostasis, a highly conserved pathway is engaged, known as the unfolded protein response (UPR), triggering adaptive programs or apoptosis of terminally damaged cells. IRE1α (also known as ERN1), the most conserved UPR sensor, mediates the activation of responses to determine cell fate under ER stress. The complexity of IRE1α regulation and its signaling outputs is mediated in part by the assembly of a dynamic multi-protein complex, named the UPRosome, that regulates IRE1α activity and the crosstalk with other pathways. We discuss several studies identifying components of the UPRosome that have illuminated novel functions in cell death, autophagy, DNA damage, energy metabolism and cytoskeleton dynamics. Here, we provide a theoretical analysis to assess the biological significance of the UPRosome and present the results of a systematic bioinformatics analysis of the available IRE1α interactome data sets followed by functional enrichment clustering. This in silico approach decoded that IRE1α also interacts with proteins involved in the cell cycle, transport, differentiation, response to viral infection and immune response. Thus, defining the spectrum of IRE1α-binding partners will reveal novel signaling outputs and the relevance of the pathway to human diseases.


Assuntos
Endorribonucleases , Proteínas Serina-Treonina Quinases , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático , Endorribonucleases/genética , Endorribonucleases/metabolismo , Humanos , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Resposta a Proteínas não Dobradas
19.
Mol Ther ; 29(5): 1862-1882, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33545358

RESUMO

Alteration to endoplasmic reticulum (ER) proteostasis is observed in a variety of neurodegenerative diseases associated with abnormal protein aggregation. Activation of the unfolded protein response (UPR) enables an adaptive reaction to recover ER proteostasis and cell function. The UPR is initiated by specialized stress sensors that engage gene expression programs through the concerted action of the transcription factors ATF4, ATF6f, and XBP1s. Although UPR signaling is generally studied as unique linear signaling branches, correlative evidence suggests that ATF6f and XBP1s may physically interact to regulate a subset of UPR target genes. In this study, we designed an ATF6f/XBP1s fusion protein termed UPRplus that behaves as a heterodimer in terms of its selective transcriptional activity. Cell-based studies demonstrated that UPRplus has a stronger effect in reducing the abnormal aggregation of mutant huntingtin and α-synuclein when compared to XBP1s or ATF6 alone. We developed a gene transfer approach to deliver UPRplus into the brain using adeno-associated viruses (AAVs) and demonstrated potent neuroprotection in vivo in preclinical models of Parkinson's disease and Huntington's disease. These results support the concept in which directing UPR-mediated gene expression toward specific adaptive programs may serve as a possible strategy to optimize the beneficial effects of the pathway in different disease conditions.


Assuntos
Fator 6 Ativador da Transcrição/metabolismo , Doenças Neurodegenerativas/prevenção & controle , Resposta a Proteínas não Dobradas , Proteína 1 de Ligação a X-Box/metabolismo , Fator 6 Ativador da Transcrição/genética , Animais , Modelos Animais de Doenças , Células HEK293 , Humanos , Proteína Huntingtina/genética , Masculino , Camundongos , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Mutação , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Proteína 1 de Ligação a X-Box/genética , alfa-Sinucleína/genética
20.
Mol Cell ; 54(4): 542-4, 2014 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-24856218

RESUMO

Tumors rely on the unfolded protein response (UPR) and angiogenesis to survive the metabolic stress of hypoxia. Karali et al. (2014) revealed that VEGF signaling engages UPR sensors in an unconventional manner that is independent of endoplasmic reticulum (ER) stress, mediated by mTOR signaling to promote endothelial cell survival and angiogenesis.


Assuntos
Fator 6 Ativador da Transcrição/metabolismo , Estresse do Retículo Endoplasmático , Células Endoteliais/fisiologia , Neovascularização Patológica , Resposta a Proteínas não Dobradas , Fator A de Crescimento do Endotélio Vascular/metabolismo , eIF-2 Quinase/metabolismo , Animais , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA