Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Mol Plant Microbe Interact ; 37(3): 290-303, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37955552

RESUMO

Puccinia coronata f. sp. avenae (Pca) is an important fungal pathogen causing crown rust that impacts oat production worldwide. Genetic resistance for crop protection against Pca is often overcome by the rapid virulence evolution of the pathogen. This study investigated the factors shaping adaptive evolution of Pca using pathogen populations from distinct geographic regions within the United States and South Africa. Phenotypic and genome-wide sequencing data of these diverse Pca collections, including 217 isolates, uncovered phylogenetic relationships and established distinct genetic composition between populations from northern and southern regions from the United States and South Africa. The population dynamics of Pca involve a bidirectional movement of inoculum between northern and southern regions of the United States and contributions from clonality and sexuality. The population from South Africa is solely clonal. A genome-wide association study (GWAS) employing a haplotype-resolved Pca reference genome was used to define 11 virulence-associated loci corresponding to 25 oat differential lines. These regions were screened to determine candidate Avr effector genes. Overall, the GWAS results allowed us to identify the underlying genetic factors controlling pathogen recognition in an oat differential set used in the United States to assign pathogen races (pathotypes). Key GWAS findings support complex genetic interactions in several oat lines, suggesting allelism among resistance genes or redundancy of genes included in the differential set, multiple resistance genes recognizing genetically linked Avr effector genes, or potentially epistatic relationships. A careful evaluation of the composition of the oat differential set accompanied by the development or implementation of molecular markers is recommended. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Basidiomycota , Resistência à Doença , Puccinia , Resistência à Doença/genética , Avena/genética , Avena/microbiologia , Virulência/genética , Estudo de Associação Genômica Ampla , Filogenia , Doenças das Plantas/microbiologia , Basidiomycota/genética , Dinâmica Populacional
2.
New Phytol ; 229(5): 2812-2826, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33176001

RESUMO

Pm1a, the first powdery mildew resistance gene described in wheat, is part of a complex resistance (R) gene cluster located in a distal region of chromosome 7AL that has suppressed genetic recombination. A nucleotide-binding, leucine-rich repeat (NLR) immune receptor gene was isolated using mutagenesis and R gene enrichment sequencing (MutRenSeq). Stable transformation confirmed Pm1a identity which induced a strong resistance phenotype in transgenic plants upon challenge with avirulent Blumeria graminis (wheat powdery mildew) pathogens. A high-density genetic map of a B. graminis family segregating for Pm1a avirulence combined with pathogen genome resequencing and RNA sequencing (RNAseq) identified AvrPm1a effector gene candidates. In planta expression identified an effector, with an N terminal Y/FxC motif, that induced a strong hypersensitive response when co-expressed with Pm1a in Nicotiana benthamiana. Single chromosome enrichment sequencing (ChromSeq) and assembly of chromosome 7A suggested that suppressed recombination around the Pm1a region was due to a rearrangement involving chromosomes 7A, 7B and 7D. The cloning of Pm1a and its identification in a highly rearranged region of chromosome 7A provides insight into the role of chromosomal rearrangements in the evolution of this complex resistance cluster.


Assuntos
Ascomicetos , Triticum , Ascomicetos/genética , Cromossomos , Resistência à Doença/genética , Doenças das Plantas/genética , Triticum/genética
3.
Nat Microbiol ; 8(11): 2130-2141, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37884814

RESUMO

In clonally reproducing dikaryotic rust fungi, non-sexual processes such as somatic nuclear exchange are postulated to play a role in diversity but have been difficult to detect due to the lack of genome resolution between the two haploid nuclei. We examined three nuclear-phased genome assemblies of Puccinia triticina, which causes wheat leaf rust disease. We found that the most recently emerged Australian lineage was derived by nuclear exchange between two pre-existing lineages, which originated in Europe and North America. Haplotype-specific phylogenetic analysis reveals that repeated somatic exchange events have shuffled haploid nuclei between long-term clonal lineages, leading to a global P. triticina population representing different combinations of a limited number of haploid genomes. Thus, nuclear exchange seems to be the predominant mechanism generating diversity and the emergence of new strains in this otherwise clonal pathogen. Such genomics-accelerated surveillance of pathogen evolution paves the way for more accurate global disease monitoring.


Assuntos
Doenças das Plantas , Triticum , Filogenia , Doenças das Plantas/microbiologia , Triticum/microbiologia , Austrália
4.
Nat Commun ; 14(1): 7354, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37963867

RESUMO

Most rust resistance genes thus far isolated from wheat have a very limited number of functional alleles. Here, we report the isolation of most of the alleles at wheat stem rust resistance gene locus SR9. The seven previously reported resistance alleles (Sr9a, Sr9b, Sr9d, Sr9e, Sr9f, Sr9g, and Sr9h) are characterised using a synergistic strategy. Loss-of-function mutants and/or transgenic complementation are used to confirm Sr9b, two haplotypes of Sr9e (Sr9e_h1 and Sr9e_h2), Sr9g, and Sr9h. Each allele encodes a highly related nucleotide-binding site leucine-rich repeat (NB-LRR) type immune receptor, containing an unusual long LRR domain, that confers resistance to a unique spectrum of isolates of the wheat stem rust pathogen. The only SR9 protein effective against stem rust pathogen race TTKSK (Ug99), SR9H, differs from SR9B by a single amino acid. SR9B and SR9G resistance proteins are also distinguished by only a single amino acid. The SR9 allelic series found in the B subgenome are orthologs of wheat stem rust resistance gene Sr21 located in the A subgenome with around 85% identity in protein sequences. Together, our results show that functional diversification of allelic variants at the SR9 locus involves single and multiple amino acid changes that recognize isolates of wheat stem rust.


Assuntos
Basidiomycota , Resistência à Doença , Mapeamento Cromossômico , Resistência à Doença/genética , Alelos , Haplótipos , Sequência de Aminoácidos , Basidiomycota/genética , Doenças das Plantas/genética
6.
G3 (Bethesda) ; 12(8)2022 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-35731221

RESUMO

Advances in sequencing technologies as well as development of algorithms and workflows have made it possible to generate fully phased genome references for organisms with nonhaploid genomes such as dikaryotic rust fungi. To enable discovery of pathogen effectors and further our understanding of virulence evolution, we generated a chromosome-scale assembly for each of the 2 nuclear genomes of the oat crown rust pathogen, Puccinia coronata f. sp. avenae (Pca). This resource complements 2 previously released partially phased genome references of Pca, which display virulence traits absent in the isolate of historic race 203 (isolate Pca203) which was selected for this genome project. A fully phased, chromosome-level reference for Pca203 was generated using PacBio reads and Hi-C data and a recently developed pipeline named NuclearPhaser for phase assignment of contigs and phase switch correction. With 18 chromosomes in each haplotype and a total size of 208.10 Mbp, Pca203 has the same number of chromosomes as other cereal rust fungi such as Puccinia graminis f. sp. tritici and Puccinia triticina, the causal agents of wheat stem rust and wheat leaf rust, respectively. The Pca203 reference marks the third fully phased chromosome-level assembly of a cereal rust to date. Here, we demonstrate that the chromosomes of these 3 Puccinia species are syntenous and that chromosomal size variations are primarily due to differences in repeat element content.


Assuntos
Basidiomycota , Puccinia , Avena/genética , Avena/microbiologia , Basidiomycota/genética , Cromossomos , Grão Comestível/genética , Genômica , Doenças das Plantas/microbiologia
7.
Genome Biol ; 23(1): 84, 2022 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-35337367

RESUMO

BACKGROUND: Most animals and plants have more than one set of chromosomes and package these haplotypes into a single nucleus within each cell. In contrast, many fungal species carry multiple haploid nuclei per cell. Rust fungi are such species with two nuclei (karyons) that contain a full set of haploid chromosomes each. The physical separation of haplotypes in dikaryons means that, unlike in diploids, Hi-C chromatin contacts between haplotypes are false-positive signals. RESULTS: We generate the first chromosome-scale, fully-phased assembly for the dikaryotic leaf rust fungus Puccinia triticina and compare Nanopore MinION and PacBio HiFi sequence-based assemblies. We show that false-positive Hi-C contacts between haplotypes are predominantly caused by phase switches rather than by collapsed regions or Hi-C read mis-mappings. We introduce a method for phasing of dikaryotic genomes into the two haplotypes using Hi-C contact graphs, including a phase switch correction step. In the HiFi assembly, relatively few phase switches occur, and these are predominantly located at haplotig boundaries and can be readily corrected. In contrast, phase switches are widespread throughout the Nanopore assembly. We show that haploid genome read coverage of 30-40 times using HiFi sequencing is required for phasing of the leaf rust genome, with 0.7% heterozygosity, and that HiFi sequencing resolves genomic regions with low heterozygosity that are otherwise collapsed in the Nanopore assembly. CONCLUSIONS: This first Hi-C based phasing pipeline for dikaryons and comparison of long-read sequencing technologies will inform future genome assembly and haplotype phasing projects in other non-haploid organisms.


Assuntos
Nanoporos , Animais , Benchmarking , Genoma , Haplótipos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de DNA/métodos
8.
Nat Plants ; 7(9): 1220-1228, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34294906

RESUMO

Stem rust caused by the fungus Puccinia graminis f. sp. tritici (Pgt) is a devastating disease of the global staple crop wheat. Although this disease was largely controlled in the latter half of the twentieth century, new virulent strains of Pgt, such as Ug99, have recently evolved1,2. These strains have caused notable losses worldwide and their continued spread threatens global wheat production. Breeding for disease resistance provides the most cost-effective control of wheat rust diseases3. A number of rust resistance genes have been characterized in wheat and most encode immune receptors of the nucleotide-binding leucine-rich repeat (NLR) class4, which recognize pathogen effector proteins known as avirulence (Avr) proteins5. However, only two Avr genes have been identified in Pgt so far, AvrSr35 and AvrSr50 (refs. 6,7), and none in other cereal rusts8,9. The Sr27 resistance gene was first identified in a wheat line carrying an introgression of the 3R chromosome from Imperial rye10. Although not deployed widely in wheat, Sr27 is widespread in the artificial crop species Triticosecale (triticale), which is a wheat-rye hybrid and is a host for Pgt11,12. Sr27 is effective against Ug99 (ref. 13) and other recent Pgt strains14,15. Here, we identify both the Sr27 gene in wheat and the corresponding AvrSr27 gene in Pgt and show that virulence to Sr27 can arise experimentally and in the field through deletion mutations, copy number variation and expression level polymorphisms at the AvrSr27 locus.


Assuntos
Resistência à Doença/genética , Doenças das Plantas/microbiologia , Puccinia/genética , Puccinia/isolamento & purificação , Puccinia/patogenicidade , Triticum/genética , Virulência/genética , Austrália , Regulação Fúngica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes Fúngicos , Genes de Plantas , Variação Genética , Genômica , Genótipo , Triticum/microbiologia
9.
Nat Commun ; 11(1): 1123, 2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-32111840

RESUMO

Stem rust is an important disease of wheat that can be controlled using resistance genes. The gene SuSr-D1 identified in cultivar 'Canthatch' suppresses stem rust resistance. SuSr-D1 mutants are resistant to several races of stem rust that are virulent on wild-type plants. Here we identify SuSr-D1 by sequencing flow-sorted chromosomes, mutagenesis, and map-based cloning. The gene encodes Med15, a subunit of the Mediator Complex, a conserved protein complex in eukaryotes that regulates expression of protein-coding genes. Nonsense mutations in Med15b.D result in expression of stem rust resistance. Time-course RNAseq analysis show a significant reduction or complete loss of differential gene expression at 24 h post inoculation in med15b.D mutants, suggesting that transcriptional reprogramming at this time point is not required for immunity to stem rust. Suppression is a common phenomenon and this study provides novel insight into suppression of rust resistance in wheat.


Assuntos
Resistência à Doença/genética , Complexo Mediador/genética , Doenças das Plantas/genética , Triticum/genética , Basidiomycota/patogenicidade , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Duplicação Gênica , Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Mutação , Fenótipo , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Imunidade Vegetal/genética , Poaceae/classificação , Poaceae/genética , Triticum/imunologia , Triticum/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA