Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Chem Biodivers ; 20(10): e202300463, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37531499

RESUMO

Over the last decade, liver diseases have become a global problem, with approximately two million deaths per year. The high increase in the mortality rate of these diseases is mostly related to the limitations in the understanding of the evolutionary clinical cases of liver diseases, the low delivery of drugs in the liver, the non-specific administration of drugs, and the side effects generated at the systemic level by conventional therapeutic agents. Today it is common knowledge that phytochemicals have a high curative potential, even in the prevention and/or reversibility of liver disorders; however, even using these green molecules, researchers continue to deal with the same challenges implemented with conventional therapeutic agents, which limits the pharmacological potential of these friendly molecules. On the other hand, the latest advances in nanotechnology have proven that the use of nanocarriers as a delivery system for green active ingredients, as well as conventional ones, increases the pharmacological potential of these active ingredients due to their physicochemical characteristics (size, Zeta potential, etc.,) moldable depending on the therapeutic objective; in addition to the above, it should be noted that in recent years, nanoparticles have been developed for the specific delivery of drugs towards a specific target (stellar cells, hepatocytes, Kupffer cells), depending on the clinical state of the disease in the patient. The present review addresses the challenges of traditional medicine and green nanomedicine as alternatives in the treatment of liver diseases.

2.
Molecules ; 27(3)2022 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-35164297

RESUMO

Pecan nut (Carya illinoensis) pericarp is usually considered as a waste, with no or low value applications. Its potential as a densified solid biofuel has been evaluated, searching for alternatives to generating quality renewable energy and reducing polluting emissions in the atmosphere, based on particle size, that is an important feedstock property. Therefore, agro-industrial residues from the pecan nut harvest were collected, milled and sieved to four different granulometry: 1.6 mm (N° 12), 0.84 mm (N° 20), 0.42 mm (N° 40), and 0.25 mm (N° 60), used as raw material for biofuel briquette production. The carbon and oxygen functional groups in the base material were investigated by Fourier transform infrared spectroscopy (FTIR) and proximate analyses were performed following international standards, for determining the moisture content, volatile materials, fixed carbon, ash content, and calorific value. For the biofuel briquettes made from base material of different particle sizes, the physical characteristics (density, hardness, swelling, and impact resistance index) and energy potential (calorific value) were determined to define their quality as a biofuel. The physical transformation of the pecan pericarp wastes into briquettes improved its quality as a solid biofuel, with calorific values from around 17.00 MJ/kg for the base material to around 18.00 MJ/kg for briquettes, regardless of particle size. Briquettes from sieve number 40 had the highest density (1.25 g/cm3). Briquettes from sieve number 60 (finest particles) presented the greater hardness (99.85). The greatest susceptibility to swelling (0.31) was registered for briquettes with the largest particle size (sieve number 20). The IRI was 200 for all treatments.

3.
Antioxidants (Basel) ; 13(8)2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39199186

RESUMO

BACKGROUND: women aging is a normal process of life; however, hormonal changes create an imbalance between prooxidants and antioxidants and could be measured as the antioxidant capability (AC) of an organism. OBJECTIVE: to find the association between plasma AC levels, dietary intakes, and body composition in 18-64-year-old women living in the northeast of Mexico. METHODS: A total of n = 514 women (18-64 years old) were grouped according to STRAW criteria as reproductive, menopausal transition, and postmenopausal. Anthropometrics, body mass index (BMI), weight-hip ratio (WHR), and weight-height ratio WHtR were determined, and percentage of body fat was analyzed by bioelectrical impedance. Dietary intake of macronutrients and vitamins A, E, and C were analyzed by a 3-day food recall. The AC status in plasma was analyzed by the ORACFL assay. RESULTS: Plasma AC levels were higher in postmenopausal women (815 µmol TE/L), and menopausal transition women (806 µmol TE/L) than in reproductive women (633 µmol TE/L). BMI was overweight (>25 kg/m2) in all three groups. WHtR and WHR are above the healthy limit of 0.5 and 0.8, respectively for both menopausal transition and postmenopausal women. In reproductive women, negative relationships were calculated between plasma AC and age (Rho = -0.250, p = 0.007), BMI (Rho = -0.473, p < 0.001), WHtR (Rho = -0.563, p < 0.001), WHR (Rho = -0.499, p < 0.001), and % body fat (Rho = -0.396, p < 0.001). A negative association was determined between plasma AC and WHtR in reproductive women (B = -2.718, p = 0.026). No association resulted for those in menopausal transition, and a positive association was obtained between plasma AC and protein (B = 0.001, p = 0.024) and vitamin E (B = 0.003, p = 0.013) intakes in postmenopausal women. CONCLUSIONS: the antioxidant capability (AC) in plasma was lower in reproductive women, and anthropometric parameters marking decreased physical fitness were associated with decreased AC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA