Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38260683

RESUMO

Folate is a vitamin required for cell growth and is present in fortified foods in the form of folic acid to prevent congenital abnormalities. The impact of low folate status on life-long health is poorly understood. We found that limiting folate levels with the folate antagonist methotrexate increased the lifespan of yeast and worms. We then restricted folate intake in aged mice and measured various health metrics, metabolites, and gene expression signatures. Limiting folate intake decreased anabolic biosynthetic processes in mice and enhanced metabolic plasticity. Despite reduced serum folate levels in mice with limited folic acid intake, these animals maintained their weight and adiposity late in life, and we did not observe adverse health outcomes. These results argue that the effectiveness of folate dietary interventions may vary depending on an individual's age and sex. A higher folate intake is advantageous during the early stages of life to support cell divisions needed for proper development. However, a lower folate intake later in life may result in healthier aging.

2.
Genes Nutr ; 18(1): 5, 2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-36959541

RESUMO

BACKGROUND: Serine hydroxymethyltransferase 2 (SHMT2) catalyzes the reversible conversion of tetrahydrofolate (THF) and serine-producing THF-conjugated one-carbon units and glycine in the mitochondria. Biallelic SHMT2 variants were identified in humans and suggested to alter the protein's active site, potentially disrupting enzymatic function. SHMT2 expression has also been shown to decrease with aging in human fibroblasts. Immortalized cell models of total SHMT2 loss or folate deficiency exhibit decreased oxidative capacity and impaired mitochondrial complex I assembly and protein levels, suggesting folate-mediated one-carbon metabolism (FOCM) and the oxidative phosphorylation system are functionally coordinated. This study examined the role of SHMT2 and folate availability in regulating mitochondrial function, energy metabolism, and cellular proliferative capacity in both heterozygous and homozygous cell models of reduced SHMT2 expression. In this study, primary mouse embryonic fibroblasts (MEF) were isolated from a C57Bl/6J dam crossed with a heterozygous Shmt2+/- male to generate Shmt2+/+ (wild-type) or Shmt2+/- (HET) MEF cells. In addition, haploid chronic myeloid leukemia cells (HAP1, wild-type) or HAP1 cells lacking SHMT2 expression (ΔSHMT2) were cultured for 4 doublings in either low-folate or folate-sufficient culture media. Cells were examined for proliferation, total folate levels, mtDNA content, protein levels of pyruvate kinase and PGC1α, pyruvate kinase enzyme activity, mitochondrial membrane potential, and mitochondrial function. RESULTS: Homozygous loss of SHMT2 in HAP1 cells impaired cellular folate accumulation and altered mitochondrial DNA content, formate production, membrane potential, and basal respiration. Formate rescued proliferation in HAP1, but not ΔSHMT2, cells cultured in low-folate medium. Pyruvate kinase activity and protein levels were impaired in ΔSHMT2 cells and in MEF cells exposed to low-folate medium. Mitochondrial biogenesis protein levels were elevated in Shmt2+/- MEF cells, while mitochondrial mass was increased in both homozygous and heterozygous models of SHMT2 loss. CONCLUSIONS: The results from this study indicate disrupted mitochondrial FOCM impairs mitochondrial folate accumulation and respiration, mitochondrial formate production, glycolytic activity, and cellular proliferation. These changes persist even after a potentially compensatory increase in mitochondrial biogenesis as a result of decreased SHMT2 levels.

3.
PNAS Nexus ; 2(4): pgad105, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37077889

RESUMO

Adequate thymidylate [deoxythymidine monophosphate (dTMP) or the "T" base in DNA] levels are essential for stability of mitochondrial DNA (mtDNA) and nuclear DNA (nDNA). Folate and vitamin B12 (B12) are essential cofactors in folate-mediated one-carbon metabolism (FOCM), a metabolic network which supports synthesis of nucleotides (including dTMP) and methionine. Perturbations in FOCM impair dTMP synthesis, causing misincorporation of uracil (or a "U" base) into DNA. During B12 deficiency, cellular folate accumulates as 5-methyltetrahdryfolate (5-methyl-THF), limiting nucleotide synthesis. The purpose of this study was to determine how reduced levels of the B12-dpendent enzyme methionine synthase (MTR) and dietary folate interact to affect mtDNA integrity and mitochondrial function in mouse liver. Folate accumulation, uracil levels, mtDNA content, and oxidative phosphorylation capacity were measured in male Mtr+/+ and Mtr+/- mice weaned onto either a folate-sufficient control (C) diet (2 mg/kg folic acid) or a folate-deficient (FD) diet (lacking folic acid) for 7 weeks. Mtr heterozygosity led to increased liver 5-methyl-THF levels. Mtr+/- mice consuming the C diet also exhibited a 40-fold increase in uracil in liver mtDNA. Mtr+/- mice consuming the FD diet exhibited less uracil accumulation in liver mtDNA as compared to Mtr+/+ mice consuming the FD diet. Furthermore, Mtr+/- mice exhibited 25% lower liver mtDNA content and a 20% lower maximal oxygen consumption rates. Impairments in mitochondrial FOCM are known to lead to increased uracil in mtDNA. This study demonstrates that impaired cytosolic dTMP synthesis, induced by decreased Mtr expression, also leads to increased uracil in mtDNA.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA