Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Immunity ; 56(6): 1220-1238.e7, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37130522

RESUMO

Early-life immune development is critical to long-term host health. However, the mechanisms that determine the pace of postnatal immune maturation are not fully resolved. Here, we analyzed mononuclear phagocytes (MNPs) in small intestinal Peyer's patches (PPs), the primary inductive site of intestinal immunity. Conventional type 1 and 2 dendritic cells (cDC1 and cDC2) and RORgt+ antigen-presenting cells (RORgt+ APC) exhibited significant age-dependent changes in subset composition, tissue distribution, and reduced cell maturation, subsequently resulting in a lack in CD4+ T cell priming during the postnatal period. Microbial cues contributed but could not fully explain the discrepancies in MNP maturation. Type I interferon (IFN) accelerated MNP maturation but IFN signaling did not represent the physiological stimulus. Instead, follicle-associated epithelium (FAE) M cell differentiation was required and sufficient to drive postweaning PP MNP maturation. Together, our results highlight the role of FAE M cell differentiation and MNP maturation in postnatal immune development.


Assuntos
Células M , Nódulos Linfáticos Agregados , Intestinos , Intestino Delgado , Diferenciação Celular , Mucosa Intestinal
2.
Hepatology ; 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38231043

RESUMO

BACKGROUND AND AIMS: Acute liver failure (ALF) is a rare but life-threatening condition, and DILI, particularly acetaminophen toxicity, is the leading cause of ALF. Innate immune mechanisms further perpetuate liver injury, while the role of the adaptive immune system in DILI-related ALF is unclear. APPROACH AND RESULTS: We analyzed liver tissue from 2 independent patient cohorts with ALF and identified hepatic T cell infiltration as a prominent feature in human ALF. CD8 + T cells were characterized by zonation toward necrotic regions and an activated gene expression signature. In murine acetaminophen-induced liver injury, intravital microscopy revealed zonation of CD8 + but not CD4 + T cells at necrotic areas. Gene expression analysis exposed upregulated C-C chemokine receptor 7 (CCR7) and its ligand CCL21 in the liver as well as a broadly activated phenotype of hepatic CD8 + T cells. In 2 mouse models of ALF, Ccr7-/- mice had significantly aggravated early-phase liver damage. Functionally, CCR7 was not involved in the recruitment of CD8 + T cells, but regulated their activation profile potentially through egress to lymphatics. Ccr7-/- CD8 + T cells were characterized by elevated expression of activation, effector, and exhaustion profiles. Adoptive transfer revealed preferential homing of CCR7-deficient CD8 + T cells to the liver, and depletion of CD8 + T cells attenuated liver damage in mice. CONCLUSIONS: Our study demonstrates the involvement of the adaptive immune system in ALF in humans and mice. We identify the CCR7-CCL21 axis as an important regulatory pathway, providing downstream protection against T cell-mediated liver injury.

3.
Gut ; 73(8): 1364-1375, 2024 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-38777574

RESUMO

Inflammation is a critical component of most acute and chronic liver diseases. The liver is a unique immunological organ with a dense vascular network, leading to intense crosstalk between tissue-resident immune cells, passenger leucocytes and parenchymal cells. During acute and chronic liver diseases, the multifaceted immune response is involved in disease promoting and repair mechanisms, while upholding core liver immune functions. In recent years, single-cell technologies have unravelled a previously unknown heterogeneity of immune cells, reshaping the complexity of the hepatic immune response. However, inflammation is a dynamic biological process, encompassing various immune cells, orchestrated in temporal and spatial dimensions, and driven by multiorgan signals. Intravital microscopy (IVM) has emerged as a powerful tool to investigate immunity by visualising the dynamic interplay between different immune cells and their surroundings within a near-natural environment. In this review, we summarise the experimental considerations to perform IVM and highlight recent technological developments. Furthermore, we outline the unique contributions of IVM to our understanding of liver immunity. Through the lens of liver disease, we discuss novel immune-mediated disease mechanisms uncovered by imaging-based studies.


Assuntos
Microscopia Intravital , Hepatopatias , Fígado , Microscopia Intravital/métodos , Humanos , Fígado/imunologia , Fígado/diagnóstico por imagem , Fígado/patologia , Hepatopatias/imunologia , Hepatopatias/diagnóstico por imagem , Animais
4.
Hepatology ; 78(1): 150-166, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-36630995

RESUMO

BACKGROUND AND AIMS: The progression of chronic liver diseases towards liver cirrhosis is accompanied by drastic tissue changes. This study combines elaborate transcriptomic and histological methods aiming at spatially resolving the hepatic immune microenvironment in NAFLD (including NASH, primary sclerosing cholangitis, primary biliary cholangitis, and severe alcoholic hepatitis). APPROACH AND RESULTS: Human liver samples were subjected to RNA-sequencing (n=225) and imaging cytometry (n=99) across 3 independent patient cohorts. Liver samples from alcoholic hepatitis and primary biliary cholangitis patients were used for comparison. Myeloid populations were further characterized in corresponding mouse models. Imaging, clinical, and phenotypical data were combined for multidimensional analysis. NAFLD/NASH and primary sclerosing cholangitis disease stages were associated with loss of parenchymal areas, increased ductular cell accumulation, and infiltration of immune cells. NASH patients predominantly exhibited myeloid cell accumulation, whereas primary sclerosing cholangitis patients additionally had pronounced lymphoid cell responses. Correlating to disease stage, both etiologies displayed intense IBA1 + CD16 low CD163 low macrophage aggregation in nonparenchymal areas, with a distinct spatial proximity to ductular cells. Mouse models revealed that disease-associated IBA1 + hepatic macrophages originated from bone marrow-derived monocytes. Using an unbiased, machine learning-based algorithm, IBA1 in combination with hepatocyte and ductular cell immunostaining-predicted advanced cirrhosis in human NASH, primary sclerosing cholangitis, and alcoholic hepatitis. CONCLUSIONS: Loss of hepatocytes and increased ductular reaction are tightly associated with monocyte-derived macrophage accumulation and represent the most prominent common immunological feature revealing the progression of NAFLD, primary sclerosing cholangitis, primary biliary cholangitis, and alcoholic hepatitis, suggesting IBA1 + CD163 low macrophages are key pathogenic drivers of human liver disease progression across diverse etiologies.


Assuntos
Colangite Esclerosante , Hepatite Alcoólica , Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Humanos , Hepatopatia Gordurosa não Alcoólica/patologia , Colangite Esclerosante/patologia , Hepatite Alcoólica/patologia , Fígado/patologia , Cirrose Hepática/complicações , Macrófagos , Modelos Animais de Doenças
5.
Int J Mol Sci ; 23(5)2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35269812

RESUMO

Nonalcoholic fatty liver disease (NAFLD) and its progressive form nonalcoholic steatohepatitis (NASH) comprise a spectrum of chronic liver diseases in the global population that can lead to end-stage liver disease and hepatocellular carcinoma (HCC). NAFLD is closely linked to the metabolic syndrome, and comorbidities such as type 2 diabetes, obesity and insulin resistance aggravate liver disease, while NAFLD promotes cardiovascular risk in affected patients. The pathomechanisms of NAFLD are multifaceted, combining hepatic factors including lipotoxicity, mechanisms of cell death and liver inflammation with extrahepatic factors including metabolic disturbance and dysbiosis. Nuclear receptors (NRs) are a family of ligand-controlled transcription factors that regulate glucose, fat and cholesterol homeostasis and modulate innate immune cell functions, including liver macrophages. In parallel with metabolic derangement in NAFLD, altered NR signaling is frequently observed and might be involved in the pathogenesis. Therapeutically, clinical data indicate that single drug targets thus far have been insufficient for reaching patient-relevant endpoints. Therefore, combinatorial treatment strategies with multiple drug targets or drugs with multiple mechanisms of actions could possibly bring advantages, by providing a more holistic therapeutic approach. In this context, peroxisome proliferator-activated receptors (PPARs) and other NRs are of great interest as they are involved in wide-ranging and multi-organ activities associated with NASH progression or regression. In this review, we summarize recent advances in understanding the pathogenesis of NAFLD, focusing on mechanisms of cell death, immunometabolism and the role of NRs. We outline novel therapeutic strategies and discuss remaining challenges.


Assuntos
Carcinoma Hepatocelular , Diabetes Mellitus Tipo 2 , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Carcinoma Hepatocelular/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Fibrose , Humanos , Inflamação/patologia , Fígado/metabolismo , Neoplasias Hepáticas/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo
6.
Int J Cancer ; 149(5): 1189-1198, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-33890289

RESUMO

Therapy with immune checkpoint inhibitors (ICIs) can lead to durable tumor control in patients with various advanced stage malignancies. However, this is not the case for all patients, leading to an ongoing search for biomarkers predicting response and outcome to ICI. The B and T lymphocyte attenuator (BTLA) is an immune checkpoint expressed on immune cells that was shown to modulate therapeutic responses. Here, we evaluate circulating levels of its soluble form, soluble B and T lymphocyte attenuator (sBTLA), as a biomarker for the prediction of treatment response and outcome to ICI therapy. Serum levels of sBTLA were analyzed by multiplex immunoassay in n = 84 patients receiving ICI therapy for solid malignancies and 32 healthy controls. BTLA expression was evaluated on peripheral blood mononuclear cells in a subset of patients (n = 6) using multicolor flow cytometry. Baseline sBTLA serum levels were significantly higher in cancer patients compared to healthy controls. Importantly, circulating sBTLA levels were an independent prognostic factor for overall survival (OS). As such, patients with initial sBTLA levels above the calculated prognostic cutoff value (311.64 pg/mL) had a median OS of only 138 days compared to 526 for patients with sBTLA levels below this value (P = .001). Uni- and multivariate Cox regression analyses confirmed the prognostic role of sBTLA in the context of ICI therapy. Finally, we observed a significant correlation between sBTLA levels and the frequency of CD3 + CD8 + BTLA+ T cells in peripheral blood. Thus, our data suggest that circulating sBTLA could represent a noninvasive biomarker to predict outcome to ICI therapy, helping to select eligible therapy candidates.


Assuntos
Biomarcadores Tumorais/sangue , Inibidores de Checkpoint Imunológico/uso terapêutico , Leucócitos Mononucleares/efeitos dos fármacos , Neoplasias/mortalidade , Receptores Imunológicos/sangue , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias/sangue , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Prognóstico , Taxa de Sobrevida
7.
J Hepatol ; 73(4): 757-770, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32360434

RESUMO

BACKGROUND & AIMS: Peroxisome proliferator-activated receptors (PPARs) are essential regulators of whole-body metabolism, but also modulate inflammation in immune cells, notably macrophages. We compared the effects of selective PPAR agonists to those of the pan-PPAR agonist lanifibranor in non-alcoholic fatty liver disease (NAFLD), and studied isoform-specific effects on hepatic macrophage biology. METHODS: Lanifibranor or selective PPARα (fenofibrate), PPARγ (pioglitazone) and PPARδ (GW501516) agonists were therapeutically administered in choline-deficient, amino acid-defined high-fat diet (CDAA-HFD)- and Western diet (WD)-fed mouse models of NAFLD. Acute liver injury was induced by carbon tetrachloride (CCl4). The role of PPARs on macrophage functionality was studied in isolated hepatic macrophages, bone marrow-derived macrophages stimulated with palmitic acid, and circulating monocytes from patients with NAFLD. RESULTS: Lanifibranor improved all histological features of steatohepatitis in CDAA-HFD-fed mice, including liver fibrosis, thereby combining and exceeding specific effects of the single PPAR agonists. Its potent anti-steatotic efficacy was confirmed in a 3D liver biochip model with primary cells. Infiltrating hepatic monocyte-derived macrophages were reduced following PPAR agonist administration, especially with lanifibranor, even after short-term treatment, paralleling improved steatosis and hepatitis. Lanifibranor similarly decreased steatosis, liver injury and monocyte infiltration in the WD model. In the acute CCl4 model, neither single nor pan-PPAR agonists directly affected monocyte recruitment. Hepatic macrophages isolated from WD-fed mice displayed a metabolically activated phenotype. Lanifibranor attenuated the accompanying inflammatory activation in both murine palmitic acid-stimulated bone marrow-derived macrophages, as well as patient-derived circulating monocytes, in a PPARδ-dependent fashion. CONCLUSION: Pan-PPAR agonists combine the beneficial effects of selective PPAR agonists and may counteract inflammation and disease progression more potently. PPARδ agonism and lanifibranor directly modulate macrophage activation, but not infiltration, thereby synergizing with beneficial metabolic effects of PPARα/γ agonists. LAY SUMMARY: Peroxisome proliferated-activated receptors (PPARs) are essential regulators of metabolism and inflammation. We demonstrated that the pan-PPAR agonist lanifibranor ameliorated all aspects of non-alcoholic fatty liver disease in independent experimental mouse models. Non-alcoholic fatty liver disease and fatty acids induce a specific polarization status in macrophages, which was altered by lanifibranor to increase expression of lipid handling genes, thereby decreasing inflammation. PPAR isoforms have differential therapeutic effects on fat-laden hepatocytes, activated hepatic stellate cells and inflammatory macrophages, supporting the clinical development of pan-PPAR agonists.


Assuntos
Fígado Gorduroso , Fenofibrato , Fígado , Macrófagos , Receptores Ativados por Proliferador de Peroxissomo , Tiazóis , Animais , Masculino , Camundongos , Modelos Animais de Doenças , Progressão da Doença , Relação Dose-Resposta a Droga , Fígado Gorduroso/induzido quimicamente , Fígado Gorduroso/tratamento farmacológico , Fígado Gorduroso/patologia , Fenofibrato/farmacologia , Hipolipemiantes/farmacologia , Fígado/efeitos dos fármacos , Fígado/patologia , Cirrose Hepática/etiologia , Cirrose Hepática/patologia , Cirrose Hepática/prevenção & controle , Macrófagos/efeitos dos fármacos , Macrófagos/patologia , Receptores Ativados por Proliferador de Peroxissomo/agonistas , Tiazóis/farmacologia
8.
Gastroenterology ; 156(6): 1877-1889.e4, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30710528

RESUMO

BACKGROUND & AIMS: Inflammation in the liver provokes fibrosis, but inflammation is also important for tumor surveillance. Inhibitors of chemokine pathways, such as CXCL16 and CXCR6 regulation of lymphocyte trafficking, are being tested as antifibrotic agents, but their effects on the development of hepatocellular carcinoma (HCC) are unclear. We assessed the roles of CXCR6-dependent immune mechanisms in hepatocarcinogenesis. METHODS: C57BL/6J wild-type (WT) mice and CXCR6-deficient mice (Cxcr6eGfp/eGfp) were given injections of diethylnitrosamine (DEN) to induce liver cancer and α-galactosylceramide to activate natural killer T (NKT) cells. We also performed studies in mice with conditional, hepatocyte-specific deletion of NEMO, which develop inflammation-associated liver tumors (NemoLPC-KO and NemoLPC-KOCxcr6eGfp/eGfp mice). We collected liver tissues from patients with cirrhosis (n = 43), HCC (n = 35), and neither of these diseases (control individuals, n = 25). Human and mouse liver tissues were analyzed by histology, immunohistochemistry, flow cytometry, RNA expression arrays (from sorted hepatic lymphocytes), and matrix-assisted laser desorption/ionization imaging. Bone marrow was transferred from Cxcr6eGfp/eGfp or WT mice to irradiated C57BL/6J mice, and spleen and liver cells were analyzed by flow cytometry. CD4+ T cells or NKT cells were isolated from the spleen and liver of CD45.1+ WT mice and transferred into CXCR6-deficient mice after DEN injection. RESULTS: After DEN injection, CXCR6-deficient mice had a significantly higher tumor burden than WT mice and increased tumor progression, characterized by reduced intrahepatic numbers of invariant NKT and CD4+ T cells that express tumor necrosis factor and interferon gamma. Livers of NemoLPC-KOCxcr6eGfp/eGfp mice had significantly more senescent hepatocytes than livers of NemoLPC-KO mice. In studies of bone-marrow chimeras, adoptive cell transfer experiments, and analyses of NemoLPC-KO mice, we found that NKT and CD4 T cells promote the removal of senescent hepatocytes to prevent hepatocarcinogenesis, and that this process required CXCR6. Injection of WT with α-galactosylceramide increased removal of senescent hepatocytes by NKT cells. We observed peritumoral accumulation of CXCR6-associated lymphocytes in human HCC, which appeared reduced compared with cirrhosis tissues. CONCLUSIONS: In studies of mice with liver tumors, we found that CXCR6 mediated NKT-cell and CD4+ T-cell removal of senescent hepatocytes. Antifibrotic strategies to reduce CXCR6 activity in liver, or to reduce inflammation or modulate the immune response, should be tested for their effects on hepatocarcinogenesis.


Assuntos
Carcinogênese/imunologia , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Células T Matadoras Naturais/imunologia , Receptores CXCR6/genética , Receptores CXCR6/imunologia , Animais , Linfócitos T CD4-Positivos/metabolismo , Carcinogênese/genética , Carcinoma Hepatocelular/metabolismo , Senescência Celular , Dietilnitrosamina , Progressão da Doença , Galactosilceramidas/farmacologia , Hepatócitos/fisiologia , Humanos , Vigilância Imunológica/genética , Interferon gama/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Cirrose Hepática/patologia , Neoplasias Hepáticas/induzido quimicamente , Neoplasias Hepáticas/metabolismo , Ativação Linfocitária/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células T Matadoras Naturais/metabolismo , Receptores CXCR6/metabolismo , Carga Tumoral/genética , Fator de Necrose Tumoral alfa/metabolismo
9.
Kidney Int ; 96(2): 505-516, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31155155

RESUMO

Recent developments in optical tissue clearing have been difficult to apply for the morphometric analysis of organs with high cellular content and small functional structures, such as the kidney. Here, we establish combinations of genetic and immuno-labelling for single cell identification, tissue clearing and subsequent de-clarification for histoimmunopathology and transmission electron microscopy. Using advanced light microscopy and computational analyses, we investigated a murine model of crescentic nephritis, an inflammatory kidney disease typified by immune-mediated damage to glomeruli leading to the formation of hypercellular lesions and the rapid loss of kidney function induced by nephrotoxic serum. Results show a graded susceptibility of the glomeruli, significant podocyte loss and capillary injury. These effects are associated with activation of parietal epithelial cells and formation of glomerular lesions that may evolve and obstruct the kidney tubule, thereby explaining the loss of kidney function. Thus, our work provides new high-throughput endpoints for the analysis of complex tissues with single-cell resolution.


Assuntos
Glomerulonefrite/patologia , Técnicas de Preparação Histocitológica/métodos , Imageamento Tridimensional , Podócitos/fisiologia , Análise de Célula Única/métodos , Animais , Capilares , Modelos Animais de Doenças , Progressão da Doença , Fluorescência , Corantes Fluorescentes/química , Genes Reporter/genética , Glomerulonefrite/imunologia , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/genética , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Microscopia Eletrônica de Transmissão , Podócitos/ultraestrutura
10.
Int J Mol Sci ; 20(2)2019 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-30646522

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease in western countries, with a continuously rising incidence. Gut-liver communication and microbiota composition have been identified as critical drivers of the NAFLD progression. Hence, it has been shown that microbiota depletion can ameliorate high-fat diet or western-diet induced experimental Non-alcoholic steatohepatitis (NASH). However, its functional implications in the methionine-choline dietary model, remain incompletely understood. Here, we investigated the physiological relevance of gut microbiota in methionine-choline deficient (MCD) diet induced NASH. Experimental liver disease was induced by 8 weeks of MCD feeding in wild-type (WT) mice, either with or without commensal microbiota depletion, by continuous broad-spectrum antibiotic (AB) treatment. MCD diet induced steatohepatitis was accompanied by a reduced gut microbiota diversity, indicating intestinal dysbiosis. MCD treatment prompted macroscopic shortening of the intestine, as well as intestinal villi in histology. However, gut microbiota composition of MCD-treated mice, neither resembled human NASH, nor did it augment the intestinal barrier integrity or intestinal inflammation. In the MCD model, AB treatment resulted in increased steatohepatitis activity, compared to microbiota proficient control mice. This phenotype was driven by pronounced neutrophil infiltration, while AB treatment only slightly increased monocyte-derived macrophages (MoMF) abundance. Our data demonstrated the differential role of gut microbiota, during steatohepatitis development. In the context of MCD induced steatohepatitis, commensal microbiota was found to be hepatoprotective.


Assuntos
Microbioma Gastrointestinal/efeitos dos fármacos , Inflamação/genética , Cirrose Hepática/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Animais , Colina/efeitos adversos , Colina/metabolismo , Deficiência de Colina/metabolismo , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Microbioma Gastrointestinal/genética , Variação Genética/genética , Humanos , Inflamação/metabolismo , Inflamação/microbiologia , Cirrose Hepática/etiologia , Cirrose Hepática/patologia , Masculino , Metionina/efeitos adversos , Metionina/deficiência , Metionina/metabolismo , Camundongos , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA