Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Infect Chemother ; 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39216594

RESUMO

We have previously reported a clinical case in which a hospitalized patient with a history of hematopoietic stem cell transplantation for acute myeloid leukemia was persistently infected with SARS-CoV-2. This study investigated the neutralizing activity of patient sera against cultured viruses isolated at each time point. We also continued to decipher and analyze the whole-genome sequence of the virus. The results showed that the neutralizing activity against the cultured virus at each time point was higher in the sera collected in the late stage of infection. However, the cultured virus collected in the late stage of infection was less likely to be neutralized not only by the sera collected in the early stage of infection but also by the sera collected in the late stage. Moreover, the virus mutated in a manner that allowed it to escape neutralizing antibodies in a host vulnerable to prolonged infection, such as immunocompromised patients.

2.
Int J Infect Dis ; 136: 146-148, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37722481

RESUMO

We present the clinical course of a 72-year-old female with COVID-19 and a history of hematologic stem cell transplantation for acute myeloid leukemia. We performed serial analyses of viral load and whole-genome amplification. The virus growth was evaluated by a real-time polymerase chain reaction assay. Neutralizing activity was measured using a chemiluminescence reduction neutralizing test of SARS-CoV-2 pseudotyped virus. After neutralizing antibody therapy, the cycle threshold value of viral genome was 28. Viruses were no longer isolated in a cell culture. K129R, V722I, and V987F of amino acid mutation in spike protein region were identified, although they soon disappeared. Four months after symptom onset, E340K, K356R, R346T, and E484V mutations appeared and persisted. The viability of the virus decreased over time, with the virus at day 145 having a cycle threshold value of 24 and positive virus isolation, but at a slower growth rate. Neutralizing antibody activity for Omicron BA.5 finally appeared about 4 months after infection. In immunocompromised patients, persistent infection with amino acid mutations can occur without neutralizing antibodies. However, the production of neutralizing antibodies reduces the growth rate of the SARS-CoV-2. Moreover, infection control requires attention to viral dynamics and evolution under different conditions.


Assuntos
COVID-19 , Feminino , Humanos , Idoso , SARS-CoV-2/genética , Hospedeiro Imunocomprometido , Aminoácidos , Anticorpos Neutralizantes , Anticorpos Antivirais
3.
Biosens Bioelectron ; 73: 174-180, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26067329

RESUMO

We developed a label-free and reagent-less potentiometric biosensor with improved affinity for thrombin. Two different oligomeric DNA aptamers that can recognize different epitopes in thrombin were introduced in parallel or serial manners on the sensing surface to capture the target via multiple contacts as found in many biological systems. The spacer and linker in the aptamer probes were optimized for exerting the best performance in molecular recognition. To gain the specificity of the sensor to the target, an antifouling molecule, sulfobeaine-3-undecanethiol (SB), was introduced on the sensor to form a self-assembled monolayer (SAM). Surface characterization revealed that the aptamer probe density was comparable to the distance of the two epitopes in thrombin, while the backfilling SB SAM was tightly aligned on the surface to resist nonspecific adsorption. The apparent binding parameters were obtained by thrombin sensing in potentiometry using the 1:1 Langmuir adsorption model, showing the improved dissociation constants (Kd) with the limit of detection of 5.5 nM on the dual aptamer-immobilized surfaces compared with single aptamer-immobilized ones. A fine control of spacer and linker length in the aptamer ligand was essential to realize the multivalent binding of thrombin on the sensor surface. The findings reported herein are effective for improving the sensitivity of potentiometric biosensor in an affordable way towards detection of tiny amount of biomolecules.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais/métodos , Trombina/análise , Sítios de Ligação , Técnicas Biossensoriais/estatística & dados numéricos , Humanos , Ácidos Nucleicos Imobilizados , Ligantes , Limite de Detecção , Modelos Moleculares , Potenciometria , Propriedades de Superfície , Trombina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA