Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bioinformatics ; 40(1)2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38192001

RESUMO

MOTIVATION: On-target gene knockdown, using siRNA, ideally results from binding fully complementary regions in mRNA transcripts to induce direct cleavage. Off-target siRNA gene knockdown can occur through several modes, one being a seed-mediated mechanism mimicking miRNA gene regulation. Seed-mediated off-target effects occur when the ∼8 nucleotides at the 5' end of the guide strand, called a seed region, bind the 3' untranslated regions of mRNA, causing reduced translation. Experiments using siRNA knockdown paired with RNA-seq can be used to detect siRNA sequences with off-target effects driven by the seed region. However, there are limited computational tools designed specifically for detecting siRNA off-target effects mediated by the seed region in differential gene expression experiments. RESULTS: SeedMatchR is an R package developed to provide users a single, unified resource for detecting and visualizing seed-mediated off-target effects of siRNA using RNA-seq experiments. SeedMatchR is designed to extend current differential expression analysis tools, such as DESeq2, by annotating results with predicted seed matches. Using publicly available data, we demonstrate the ability of SeedMatchR to detect cumulative changes in differential gene expression attributed to siRNA seed region activity. AVAILABILITY: SeedMatchR is available on CRAN. Documentation and example workflows are available through the SeedMatchR GitHub page at https://github.com/tacazares/SeedMatchR.


Assuntos
MicroRNAs , RNA Interferente Pequeno/genética , RNA-Seq , MicroRNAs/metabolismo , Nucleotídeos , Regiões 3' não Traduzidas , RNA Mensageiro/metabolismo , Interferência de RNA
2.
N Engl J Med ; 385(15): 1382-1392, 2021 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-34260849

RESUMO

BACKGROUND: Patients with underlying medical conditions are at increased risk for severe coronavirus disease 2019 (Covid-19). Whereas vaccine-derived immunity develops over time, neutralizing monoclonal-antibody treatment provides immediate, passive immunity and may limit disease progression and complications. METHODS: In this phase 3 trial, we randomly assigned, in a 1:1 ratio, a cohort of ambulatory patients with mild or moderate Covid-19 who were at high risk for progression to severe disease to receive a single intravenous infusion of either a neutralizing monoclonal-antibody combination agent (2800 mg of bamlanivimab and 2800 mg of etesevimab, administered together) or placebo within 3 days after a laboratory diagnosis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. The primary outcome was the overall clinical status of the patients, defined as Covid-19-related hospitalization or death from any cause by day 29. RESULTS: A total of 1035 patients underwent randomization and received an infusion of bamlanivimab-etesevimab or placebo. The mean (±SD) age of the patients was 53.8±16.8 years, and 52.0% were adolescent girls or women. By day 29, a total of 11 of 518 patients (2.1%) in the bamlanivimab-etesevimab group had a Covid-19-related hospitalization or death from any cause, as compared with 36 of 517 patients (7.0%) in the placebo group (absolute risk difference, -4.8 percentage points; 95% confidence interval [CI], -7.4 to -2.3; relative risk difference, 70%; P<0.001). No deaths occurred in the bamlanivimab-etesevimab group; in the placebo group, 10 deaths occurred, 9 of which were designated by the trial investigators as Covid-19-related. At day 7, a greater reduction from baseline in the log viral load was observed among patients who received bamlanivimab plus etesevimab than among those who received placebo (difference from placebo in the change from baseline, -1.20; 95% CI, -1.46 to -0.94; P<0.001). CONCLUSIONS: Among high-risk ambulatory patients, bamlanivimab plus etesevimab led to a lower incidence of Covid-19-related hospitalization and death than did placebo and accelerated the decline in the SARS-CoV-2 viral load. (Funded by Eli Lilly; BLAZE-1 ClinicalTrials.gov number, NCT04427501.).


Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Tratamento Farmacológico da COVID-19 , Adolescente , Adulto , Idoso , Anticorpos Monoclonais Humanizados/efeitos adversos , COVID-19/etnologia , COVID-19/virologia , Criança , Método Duplo-Cego , Quimioterapia Combinada , Feminino , Hospitalização/estatística & dados numéricos , Humanos , Infusões Intravenosas , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Gravidade do Paciente , Fatores de Risco , SARS-CoV-2/isolamento & purificação , Carga Viral/efeitos dos fármacos , Adulto Jovem
3.
Clin Infect Dis ; 75(1): e440-e449, 2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34718468

RESUMO

BACKGROUND: Based on interim analyses and modeling data, lower doses of bamlanivimab and etesevimab together (700/1400 mg) were investigated to determine optimal dose and expand availability of treatment. METHODS: This Phase 3 portion of the BLAZE-1 trial characterized the effect of bamlanivimab with etesevimab on overall patient clinical status and virologic outcomes in ambulatory patients ≥12 years old, with mild-to-moderate coronavirus disease 2019 (COVID-19), and ≥1 risk factor for progressing to severe COVID-19 and/or hospitalization. Bamlanivimab and etesevimab together (700/1400 mg) or placebo were infused intravenously within 3 days of patients' first positive COVID-19 test. RESULTS: In total, 769 patients were infused (median age [range]; 56.0 years [12, 93], 30.3% of patients ≥65 years of age and median duration of symptoms; 4 days). By day 29, 4/511 patients (0.8%) in the antibody treatment group had a COVID-19-related hospitalization or any-cause death, as compared with 15/258 patients (5.8%) in the placebo group (Δ[95% confidence interval {CI}] = -5.0 [-8.0, -2.1], P < .001). No deaths occurred in the bamlanivimab and etesevimab group compared with 4 deaths (all COVID-19-related) in the placebo group. Patients receiving antibody treatment had a greater mean reduction in viral load from baseline to Day 7 (Δ[95% CI] = -0.99 [-1.33, -.66], P < .0001) compared with those receiving placebo. Persistently high viral load at Day 7 correlated with COVID-19-related hospitalization or any-cause death by Day 29 in all BLAZE-1 cohorts investigated. CONCLUSIONS: These data support the use of bamlanivimab and etesevimab (700/1400 mg) for ambulatory patients at high risk for severe COVID-19. Evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants will require continued monitoring to determine the applicability of this treatment. CLINICAL TRIALS REGISTRATION: NCT04427501.


Assuntos
Tratamento Farmacológico da COVID-19 , Anticorpos Monoclonais Humanizados , Anticorpos Neutralizantes , Criança , Humanos , Pessoa de Meia-Idade , Prognóstico , SARS-CoV-2 , Carga Viral
4.
J Transl Med ; 20(1): 134, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35303909

RESUMO

BACKGROUND: A thorough understanding of a patient's inflammatory response to Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection is crucial to discerning the associated, underlying immunological processes and to the selection and implementation of treatment strategies. Defining peripheral blood biomarkers relevant to SARS-CoV-2 infection is fundamental to detecting and monitoring this systemic disease. This safety-focused study aims to monitor and characterize the immune response to SARS-CoV-2 infection via analysis of peripheral blood and nasopharyngeal swab samples obtained from patients hospitalized with Coronavirus disease 2019 (COVID-19), in the presence or absence of bamlanivimab treatment. METHODS: 23 patients hospitalized with COVID-19 were randomized to receive a single dose of the neutralizing monoclonal antibody, bamlanivimab (700 mg, 2800 mg or 7000 mg) or placebo, at study initiation (Clinical Trial; NCT04411628). Serum samples and nasopharyngeal swabs were collected at multiple time points over 1 month. A Proximity Extension Array was used to detect inflammatory profiles from protein biomarkers in the serum of hospitalized COVID-19 patients relative to age/sex-matched healthy controls. RNA sequencing was performed on nasopharyngeal swabs. A Luminex serology assay and Elecsys® Anti-SARS-CoV-2 immunoassay were used to detect endogenous antibody formation and to monitor seroconversion in each cohort over time. A mixed model for repeated measures approach was used to analyze changes in serology and serum proteins over time. RESULTS: Levels of IL-6, CXCL10, CXCL11, IFNγ and MCP-3 were > fourfold higher in the serum of patients with COVID-19 versus healthy controls and linked with observations of inflammatory and viral-induced interferon response genes detected in nasopharyngeal swab samples from the same patients. While IgA and IgM titers peaked around 7 days post-dose, IgG titers remained high, even after 28 days. Changes in biomarkers over time were not significantly different between the bamlanivimab and placebo groups. CONCLUSIONS: Similarities observed between nasopharyngeal gene expression patterns and peripheral blood biomarker profiles reveal a connection between the circulation and processes in the nasopharyngeal cavity, reinforcing the potential utility of systemic blood biomarker profiling for therapeutic monitoring of patient response. Serological antibody responses in patients correlated closely with reductions in the COVID-19 inflammatory protein biomarker signature. Bamlanivimab did not affect the biomarker dynamics in this hospitalized patient population.


Assuntos
Tratamento Farmacológico da COVID-19 , Anticorpos Monoclonais Humanizados/uso terapêutico , Anticorpos Neutralizantes , Anticorpos Antivirais , Biomarcadores , Expressão Gênica , Humanos , Nasofaringe , SARS-CoV-2
5.
J Allergy Clin Immunol ; 147(1): 107-111, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32920092

RESUMO

BACKGROUND: Physicians treating patients with coronavirus disease 2019 (COVID-19) increasingly believe that the hyperinflammatory acute stage of COVID-19 results in a cytokine storm. The circulating biomarkers seen across the spectrum of COVID-19 have not been characterized compared with healthy controls, but such analyses are likely to yield insights into the pursuit of interventions that adequately reduce the burden of these cytokine storms. OBJECTIVE: To identify and characterize the host inflammatory response to severe acute respiratory syndrome coronavirus 2 infection, we assessed levels of proteins related to immune responses and cardiovascular disease in patients stratified as mild, moderate, and severe versus matched healthy controls. METHODS: Blood samples from adult patients hospitalized with COVID-19 were analyzed using high-throughput and ultrasensitive proteomic platforms and compared with age- and sex-matched healthy controls to provide insights into differential regulation of 185 markers. RESULTS: Results indicate a dominant hyperinflammatory milieu in the circulation and vascular endothelial damage markers within patients with COVID-19, and strong biomarker association with patient response as measured by Ordinal Scale. As patients progress, we observe statistically significant dysregulation of IFN-γ, IL-1RA, IL-6, IL-10, IL-19, monocyte chemoattractant protein (MCP)-1, MCP-2, MCP-3, CXCL9, CXCL10, CXCL5, ENRAGE, and poly (ADP-ribose) polymerase 1. Furthermore, in a limited series of patients who were sampled frequently, confirming reliability and reproducibility of our assays, we demonstrate that intervention with baricitinib attenuates these circulating biomarkers associated with the cytokine storm. CONCLUSIONS: These wide-ranging circulating biomarkers show an association with increased disease severity and may help stratify patients and selection of therapeutic options. They also provide insights into mechanisms of severe acute respiratory syndrome coronavirus 2 pathogenesis and the host response.


Assuntos
COVID-19/sangue , Síndrome da Liberação de Citocina/sangue , Citocinas/sangue , Poli(ADP-Ribose) Polimerase-1/sangue , Proteômica , SARS-CoV-2/metabolismo , Adulto , Biomarcadores/sangue , Feminino , Humanos , Masculino
6.
Rheumatology (Oxford) ; 60(11): 5390-5396, 2021 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33580248

RESUMO

OBJECTIVES: Heterogeneity of SLE patients in clinical trials remains a challenge for developing new therapies. This study used a combinatorial analysis of four molecular biomarkers to define key sources of heterogeneity. METHODS: Combinations of IFN (high/low), anti-dsDNA (+/-) and C3 and C4 (low/normal) were used to subset n = 1747 patients from two randomized phase III trials. A dichotomous classification scheme defined SLE (+) as: IFN (high), anti-dsDNA (+), C3 (low) and/or C4 (low). SLE (-) required all of the following: IFN (low), anti-dsDNA (-), C3 (normal) and C4 (normal). Additional analyses subset the data further by IFN, anti-dsDNA and complement. RESULTS: The trials enrolled n = 2262 patients of which n = 1747 patients had data for IFN, anti-dsDNA, C3 and C4 at baseline. There were n = 247 patients in the SLE (-) population and n = 1500 patients in the SLE (+) population. The SLE (-) population had more mucocutaneous and musculoskeletal disease at baseline, while SLE (+) had more haematological, renal and vascular involvement. There was lower concomitant medication use in the SLE (-) population for corticosteroids and immunosuppressants, except for MTX. Time to severe flare was significantly longer in SLE (-) vs SLE (+) (P < 0.0001) and SRI-4 response rate was significantly lower in SLE (-) vs SLE (+) (P = 0.00016). The USA had more SLE (-) patients (22%) than Mexico/Central America/South America (10%), Europe (7%) and the rest of the world (5%). CONCLUSION: Combinatorial analysis of four molecular biomarkers revealed subsets of SLE patients that discriminated by disease manifestations, concomitant medication use, geography, time to severe flare and SRI-4 response. These data may be useful for designing clinical trials and identifying subsets of patients for analysis. Rheumatology key messages SLE patients from a P3 trial were categorized by IFN, anti-dsDNA, C3 and C4 status. Patients lacking molecular markers of SLE distinguished from biomarker positive patients on multiple clinical parameters. Biomarker negative patients have distinct disease characteristics that may impact clinical trial outcomes.


Assuntos
Anticorpos Antinucleares/sangue , Complemento C3/metabolismo , Complemento C4/metabolismo , Interferons/sangue , Lúpus Eritematoso Sistêmico/diagnóstico , Humanos , Lúpus Eritematoso Sistêmico/sangue , Fenótipo
7.
Exp Dermatol ; 30(11): 1650-1661, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34003519

RESUMO

Atopic dermatitis (AD) is a heterogeneous systemic inflammatory skin disease associated with dysregulated immune responses, barrier dysfunction and activated sensory nerves. To characterize circulating inflammatory profiles and underlying systemic disease heterogeneity within AD patients, blood samples from adult patients (N = 123) with moderate-to-severe AD in a phase 2 study of baricitinib (JAHG) were analysed. Baseline levels of 131 markers were evaluated using high-throughput and ultrasensitive proteomic platforms, patient clusters were generated based on these peripheral markers. We implemented a novel cluster reproducibility method to validate cluster outcomes within our study and used publicly available AD biomarker data set (73 markers, N = 58 patients) to validate our findings. Cluster reproducibility analysis demonstrated best consistency for 2 clusters by k-means, reproducibility of this clustering outcome was validated in an independent patient cohort. These unique JAHG patient subgroups either possessed elevated pro-inflammatory mediators, notably TNFß, MCP-3 and IL-13, among a variety of immune responses (high inflammatory) or lower levels of inflammatory biomarkers (low inflammatory). The high inflammatory subgroup was associated with greater baseline disease severity, demonstrated by greater EASI, SCORAD Index, Itch NRS and DLQI scores, compared with low inflammatory subgroup. African-American patients were predominantly associated with the high inflammatory subgroup and increased baseline disease severity. In patients with moderate-to-severe AD, heterogeneity was identified by the detection of 2 disease subgroups, differential clustering amongst ethnic groups and elevated pro-inflammatory mediators extending beyond traditional polarized immune responses. Therapeutic strategies targeting multiple pro-inflammatory cytokines may be needed to address this heterogeneity.


Assuntos
Azetidinas/uso terapêutico , Dermatite Atópica/sangue , Dermatite Atópica/tratamento farmacológico , Purinas/uso terapêutico , Pirazóis/uso terapêutico , Sulfonamidas/uso terapêutico , Adulto , Biomarcadores/sangue , Dermatite Atópica/complicações , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Índice de Gravidade de Doença , Adulto Jovem
8.
JAMA ; 325(7): 632-644, 2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33475701

RESUMO

Importance: Coronavirus disease 2019 (COVID-19) continues to spread rapidly worldwide. Neutralizing antibodies are a potential treatment for COVID-19. Objective: To determine the effect of bamlanivimab monotherapy and combination therapy with bamlanivimab and etesevimab on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral load in mild to moderate COVID-19. Design, Setting, and Participants: The BLAZE-1 study is a randomized phase 2/3 trial at 49 US centers including ambulatory patients (N = 613) who tested positive for SARS-CoV-2 infection and had 1 or more mild to moderate symptoms. Patients who received bamlanivimab monotherapy or placebo were enrolled first (June 17-August 21, 2020) followed by patients who received bamlanivimab and etesevimab or placebo (August 22-September 3). These are the final analyses and represent findings through October 6, 2020. Interventions: Patients were randomized to receive a single infusion of bamlanivimab (700 mg [n = 101], 2800 mg [n = 107], or 7000 mg [n = 101]), the combination treatment (2800 mg of bamlanivimab and 2800 mg of etesevimab [n = 112]), or placebo (n = 156). Main Outcomes and Measures: The primary end point was change in SARS-CoV-2 log viral load at day 11 (±4 days). Nine prespecified secondary outcome measures were evaluated with comparisons between each treatment group and placebo, and included 3 other measures of viral load, 5 on symptoms, and 1 measure of clinical outcome (the proportion of patients with a COVID-19-related hospitalization, an emergency department [ED] visit, or death at day 29). Results: Among the 577 patients who were randomized and received an infusion (mean age, 44.7 [SD, 15.7] years; 315 [54.6%] women), 533 (92.4%) completed the efficacy evaluation period (day 29). The change in log viral load from baseline at day 11 was -3.72 for 700 mg, -4.08 for 2800 mg, -3.49 for 7000 mg, -4.37 for combination treatment, and -3.80 for placebo. Compared with placebo, the differences in the change in log viral load at day 11 were 0.09 (95% CI, -0.35 to 0.52; P = .69) for 700 mg, -0.27 (95% CI, -0.71 to 0.16; P = .21) for 2800 mg, 0.31 (95% CI, -0.13 to 0.76; P = .16) for 7000 mg, and -0.57 (95% CI, -1.00 to -0.14; P = .01) for combination treatment. Among the secondary outcome measures, differences between each treatment group vs the placebo group were statistically significant for 10 of 84 end points. The proportion of patients with COVID-19-related hospitalizations or ED visits was 5.8% (9 events) for placebo, 1.0% (1 event) for 700 mg, 1.9% (2 events) for 2800 mg, 2.0% (2 events) for 7000 mg, and 0.9% (1 event) for combination treatment. Immediate hypersensitivity reactions were reported in 9 patients (6 bamlanivimab, 2 combination treatment, and 1 placebo). No deaths occurred during the study treatment. Conclusions and Relevance: Among nonhospitalized patients with mild to moderate COVID-19 illness, treatment with bamlanivimab and etesevimab, compared with placebo, was associated with a statistically significant reduction in SARS-CoV-2 viral load at day 11; no significant difference in viral load reduction was observed for bamlanivimab monotherapy. Further ongoing clinical trials will focus on assessing the clinical benefit of antispike neutralizing antibodies in patients with COVID-19 as a primary end point. Trial Registration: ClinicalTrials.gov Identifier: NCT04427501.


Assuntos
Anticorpos Monoclonais Humanizados/administração & dosagem , Anticorpos Neutralizantes/administração & dosagem , Antivirais/administração & dosagem , Tratamento Farmacológico da COVID-19 , SARS-CoV-2/isolamento & purificação , Carga Viral/efeitos dos fármacos , Adulto , Idoso , Anticorpos Monoclonais Humanizados/efeitos adversos , Anticorpos Neutralizantes/efeitos adversos , Antivirais/efeitos adversos , COVID-19/mortalidade , COVID-19/virologia , Relação Dose-Resposta a Droga , Método Duplo-Cego , Quimioterapia Combinada , Feminino , Hospitalização/estatística & dados numéricos , Humanos , Infusões Intravenosas , Masculino , Pessoa de Meia-Idade , SARS-CoV-2/efeitos dos fármacos , Índice de Gravidade de Doença
9.
Anal Biochem ; 442(1): 1-9, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-23872001

RESUMO

Apelin is emerging as an important hormone regulator of cardiovascular homoeostasis and an important biomarker for heart failure. Apelin concentrations have historically been measured by immunoassays; however, reported apelin concentrations measured in healthy volunteers show a large disparity from a few picograms per milliliter (pg/ml) to several nanograms per milliliter (ng/ml). Apelin exists in several isoforms ranging in size from 12 to 36 residues, and immunoassays generally cannot distinguish the specific forms present. In this study, an optimized method for enriching apelin peptides with cation-exchange beads followed with mass spectrometry analysis is presented. Apelin peptides are labile in plasma at physiological conditions; however, by lowering the plasma pH to 4.5, the recovery of apelin peptides can be increased significantly. Through optimizing the cation-exchange extraction process, we improved the lower limit of detection for most of the apelin peptides monitored to a few pg/ml. Using the improved method, we detected pyroglutamyl apelin-13 [(pyr)apelin-13] as the major apelin isoform present in plasma from several healthy volunteers at concentrations ranging from 7.7 to 23.3pg/ml.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/sangue , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Isoformas de Proteínas/sangue , Valores de Referência , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
10.
Clin Transl Gastroenterol ; 14(11): e00630, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37594044

RESUMO

INTRODUCTION: Mirikizumab, an anti-interleukin-23p19 monoclonal antibody, demonstrated efficacy in phase 2 and 3 randomized clinical trials of patients with moderate-to-severe ulcerative colitis (UC). Previous results have shown that 12 weeks of mirikizumab treatment downregulated transcripts associated with UC disease activity and tumor necrosis factor inhibitor resistance. We assessed week-52 gene expression from week-12 responders receiving mirikizumab or placebo. METHODS: In the phase 2 AMAC study (NCT02589665), mirikizumab-treated patients achieving week-12 clinical response were rerandomized to mirikizumab 200 mg subcutaneous every 4 or 12 weeks through week 52 (N = 31). Week-12 placebo responders continued placebo through week 52 (N = 7). The limma R package clustered transcript changes in colonic mucosa biopsies from baseline to week 12 into differentially expressed genes (DEGs). Among DEGs, similarly expressed genes (DEGSEGs) maintaining week-12 expression through week 52 were identified. RESULTS: Of 89 DEGSEGs, 63 (70.8%) were present only in mirikizumab induction responders, 5 (5.6%) in placebo responders, and 21 (23.6%) in both. Week-12 magnitudes and week-52 consistency of transcript changes were greater in mirikizumab than in placebo responders (log2FC > 1). DEGSEG clusters (from 84 DEGSEGs identified in mirikizumab and mirikizumab/placebo responders) correlated to modified Mayo score (26/84 with Pearson correlation coefficient [PCC] >0.5) and Robarts Histopathology Index (55/84 with PCC >0.5), sustained through week 52. DISCUSSION: Mirikizumab responders had broader, more sustained transcriptional changes of greater magnitudes at week 52 vs placebo. Mirikizumab responder DEGSEGs suggest a distinct molecular healing pathway associated with mirikizumab interleukin-23 inhibition. The cluster's correlation with disease activity illustrates relationships between clinical, endoscopic, and molecular healing in UC.


Assuntos
Colite Ulcerativa , Humanos , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/genética , Transcriptoma , Indução de Remissão , Resultado do Tratamento , Biópsia
11.
J Immunol Methods ; 522: 113569, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37748729

RESUMO

Biologic drugs (therapeutic proteins or peptides) have become one of the most important therapeutic modalities over the past few decades. Drug-induced immunogenicity is a significant concern as it may affect safety, tolerability, and efficacy. With more sensitive and drug-tolerant screening assays in use today, reliable estimation of anti-drug-antibody (ADA) titer has become more important for understanding clinically relevant ADA levels. Titer is commonly defined as the dilution factor resulting in an assay signal equal to a pre-specified cut point factor. Given its influence on the resulting titer precision, the choice of a titer cut point factor warrants careful consideration. In this paper, we discuss the theoretical dilution model, investigate how titer variability depends on the cut point factor and propose a standardized cut point factor to increase precision of titer estimates. Additionally, we demonstrate that non-linear regression-based titer estimation provides both improved precision and implementation efficiency relative to commonly used estimation approaches.


Assuntos
Anticorpos , Produtos Biológicos
12.
Clin Transl Gastroenterol ; 14(7): e00578, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-36881820

RESUMO

INTRODUCTION: Mirikizumab, a monoclonal antibody targeting the p19 subunit of interleukin (IL)-23, demonstrated efficacy and was well-tolerated in a phase 2 randomized clinical trial in patients with moderate-to-severe ulcerative colitis (UC) (NCT02589665). We explored gene expression changes in colonic tissue from study patients and their association with clinical outcomes. METHODS: Patients were randomized to receive intravenous placebo or 3 mirikizumab induction doses. Patient biopsies were collected at baseline and week 12, and differential gene expression was measured using a microarray platform and compared in all treatment groups to determine differential expression values between baseline and week 12. RESULTS: The greatest improvement in clinical outcomes and placebo-adjusted change from baseline in transcripts at week 12 was observed in the 200 mg mirikizumab group. Transcripts significantly modified by mirikizumab correlate with key UC disease activity indices (modified Mayo score, Geboes score, and Robarts Histopathology Index) and include MMP1, MMP3, S100A8, and IL1ß. Changes in transcripts associated with increased disease activity were decreased after 12 weeks of mirikizumab treatment. Mirikizumab treatment affected transcripts associated with resistance to current therapies, including IL-1ß, OSMR, FCGR3A and FCGR3B, and CXCL6, suggesting that anti-IL23p19 therapy modulates biological pathways involved in resistance to antitumor necrosis factor and Janus kinase inhibitors. DISCUSSION: This is the first large-scale gene expression study of inflamed mucosa from patients with UC treated with anti-IL23p19 therapy. These results provide molecular evidence for mucosal healing from an extensive survey of changes in transcripts that improve our understanding of the molecular effects of IL-23p19 inhibition in UC.


Assuntos
Colite Ulcerativa , Humanos , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/genética , Inibidores do Fator de Necrose Tumoral/uso terapêutico , Anticorpos Monoclonais Humanizados/efeitos adversos , Anticorpos Monoclonais/efeitos adversos
13.
Pathogens ; 12(12)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38133292

RESUMO

As part of the non-clinical safety package characterizing bamlanivimab (SARS-CoV-2 neutralizing monoclonal antibody), the risk profile for antibody-dependent enhancement of infection (ADE) was evaluated in vitro and in an African green monkey (AGM) model of COVID-19. In vitro ADE assays in primary human macrophage, Raji, or THP-1 cells were used to evaluate enhancement of viral infection. Bamlanivimab binding to C1q, FcR, and cell-based effector activity was also assessed. In AGMs, the impact of bamlanivimab pretreatment on viral loads and clinical and histological pathology was assessed to evaluate enhanced SARS-CoV-2 replication or pathology. Bamlanivimab did not increase viral replication in vitro, despite a demonstrated effector function. In vivo, no significant differences were found among the AGM groups for weight, temperature, or food intake. Treatment with bamlanivimab reduced viral loads in nasal and oral swabs and BAL fluid relative to control groups. Viral antigen was not detected in lung tissue from animals treated with the highest dose of bamlanivimab. Bamlanivimab did not induce ADE of SARS-CoV-2 infection in vitro or in an AGM model of infection at any dose evaluated. The findings suggest that high-affinity monoclonal antibodies pose a low risk of mediating ADE in patients and support their safety profile as a treatment of COVID-19 disease.

14.
Sci Transl Med ; 14(655): eabn3041, 2022 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-35679357

RESUMO

As the coronavirus disease 2019 (COVID-19) pandemic evolves and vaccine rollout progresses, the availability and demand for monoclonal antibodies for the prevention and treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection are also accelerating. This longitudinal serological study evaluated the magnitude and potency of the endogenous antibody response to COVID-19 vaccination in participants who first received a COVID-19 monoclonal antibody in a prevention study. Over the course of 6 months, serum samples were collected from a population of nursing home residents and staff enrolled in a clinical trial who were randomized to either bamlanivimab treatment or placebo. In an unplanned component of this trial, a subset of these participants was subsequently fully vaccinated with two doses of either SpikeVax (Moderna) or Comirnaty (BioNTech/Pfizer) COVID-19 mRNA vaccines. This post hoc analysis assessed the immune response to vaccination for 135 participants without prior SARS-CoV-2 infection. Antibody titers and potency were assessed using three assays against SARS-CoV-2 proteins that bamlanivimab does not efficiently bind to, thereby reflecting the endogenous antibody response. All bamlanivimab and placebo recipients mounted a robust immune response to full COVID-19 vaccination, irrespective of age, risk category, and vaccine type with any observed differences of uncertain clinical importance. These findings are pertinent for informing public health policy with results that suggest that the benefit of receiving COVID-19 vaccination at the earliest opportunity outweighs the minimal effect on the endogenous immune response due to prior prophylactic COVID-19 monoclonal antibody infusion.


Assuntos
COVID-19 , Vacinas Virais , Anticorpos Monoclonais Humanizados/uso terapêutico , Anticorpos Neutralizantes , Anticorpos Antivirais , Formação de Anticorpos , Vacinas contra COVID-19 , Humanos , SARS-CoV-2 , Vacinação
15.
Cell Rep ; 39(7): 110812, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35568025

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-neutralizing monoclonal antibodies (mAbs) can reduce the risk of hospitalization from coronavirus disease 2019 (COVID-19) when administered early. However, SARS-CoV-2 variants of concern (VOCs) have negatively affected therapeutic use of some authorized mAbs. Using a high-throughput B cell screening pipeline, we isolated LY-CoV1404 (bebtelovimab), a highly potent SARS-CoV-2 spike glycoprotein receptor binding domain (RBD)-specific antibody. LY-CoV1404 potently neutralizes authentic SARS-CoV-2, B.1.1.7, B.1.351, and B.1.617.2. In pseudovirus neutralization studies, LY-CoV1404 potently neutralizes variants, including B.1.1.7, B.1.351, B.1.617.2, B.1.427/B.1.429, P.1, B.1.526, B.1.1.529, and the BA.2 subvariant. Structural analysis reveals that the contact residues of the LY-CoV1404 epitope are highly conserved, except for N439 and N501. The binding and neutralizing activity of LY-CoV1404 is unaffected by the most common mutations at these positions (N439K and N501Y). The broad and potent neutralization activity and the relatively conserved epitope suggest that LY-CoV1404 has the potential to be an effective therapeutic agent to treat all known variants.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Anticorpos Monoclonais/química , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/farmacologia , Anticorpos Neutralizantes/uso terapêutico , Anticorpos Antivirais , Epitopos , Humanos
16.
bioRxiv ; 2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33972947

RESUMO

SARS-CoV-2 neutralizing monoclonal antibodies (mAbs) can reduce the risk of hospitalization when administered early during COVID-19 disease. However, the emergence of variants of concern has negatively impacted the therapeutic use of some authorized mAbs. Using a high throughput B-cell screening pipeline, we isolated a highly potent SARS-CoV-2 spike glycoprotein receptor binding domain (RBD)-specific antibody called LY-CoV1404 (also known as bebtelovimab). LY-CoV1404 potently neutralizes authentic SARS-CoV-2 virus, including the prototype, B.1.1.7, B.1.351 and B.1.617.2). In pseudovirus neutralization studies, LY-CoV1404 retains potent neutralizing activity against numerous variants including B.1.1.7, B.1.351, B.1.617.2, B.1.427/B.1.429, P.1, B.1.526, B.1.1.529, and the BA.2 subvariant and retains binding to spike proteins with a variety of underlying RBD mutations including K417N, L452R, E484K, and N501Y. Structural analysis reveals that the contact residues of the LY-CoV1404 epitope are highly conserved with the exception of N439 and N501. Notably, the binding and neutralizing activity of LY-CoV1404 is unaffected by the most common mutations at these positions (N439K and N501Y). The breadth of reactivity to amino acid substitutions present among current VOC together with broad and potent neutralizing activity and the relatively conserved epitope suggest that LY-CoV1404 has the potential to be an effective therapeutic agent to treat all known variants causing COVID-19. In Brief: LY-CoV1404 is a potent SARS-CoV-2-binding antibody that neutralizes all known variants of concern and whose epitope is rarely mutated. Highlights: LY-CoV1404 potently neutralizes SARS-CoV-2 authentic virus and known variants of concern including the B.1.1.529 (Omicron), the BA.2 Omicron subvariant, and B.1.617.2 (Delta) variantsNo loss of potency against currently circulating variantsBinding epitope on RBD of SARS-CoV-2 is rarely mutated in GISAID databaseBreadth of neutralizing activity and potency supports clinical development.

17.
Biochim Biophys Acta ; 1804(3): 642-52, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20005305

RESUMO

This work outlines a new de novo design process for the creation of novel kinase inhibitor libraries. It relies on a profiling paradigm that generates a substantial amount of kinase inhibitor data from which highly predictive QSAR models can be constructed. In addition, a broad diversity of X-ray structure information is needed for binding mode prediction. This is important for scaffold and substituent site selection. Borrowing from FBDD, the process involves fragmentation of known actives, proposition of binding mode hypotheses for the fragments, and model-driven recombination using a pharmacophore derived from known kinase inhibitor structures. The support vector machine method, using Merck atom pair derived fingerprint descriptors, was used to build models from activity from 6 kinase assays. These models were qualified prospectively by selecting and testing compounds from the internal compound collection. Overall hit and enrichment rates of 82% and 2.5%, respectively, qualified the models for use in library design. Using the process, 7 novel libraries were designed, synthesized and tested against these same 6 kinases. The results showed excellent results, yielding a 92% hit rate for the 179 compounds that made up the 7 libraries. The results of one library designed to include known literature compounds, as well as an analysis of overall substituent frequency, are discussed.


Assuntos
Modelos Químicos , Modelos Moleculares , Biblioteca de Peptídeos , Inibidores de Proteínas Quinases/química , Proteínas Quinases/química , Animais , Cristalografia por Raios X , Humanos , Ligação Proteica , Inibidores de Proteínas Quinases/síntese química
18.
Nat Med ; 10(7): 719-26, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15195085

RESUMO

We have previously shown that apolipoprotein E (Apoe) promotes the formation of amyloid in brain and that astrocyte-specific expression of APOE markedly affects the deposition of amyloid-beta peptides (Abeta) in a mouse model of Alzheimer disease. Given the capacity of astrocytes to degrade Abeta, we investigated the potential role of Apoe in this astrocyte-mediated degradation. In contrast to cultured adult wild-type mouse astrocytes, adult Apoe(-/-) astrocytes do not degrade Abeta present in Abeta plaque-bearing brain sections in vitro. Coincubation with antibodies to either Apoe or Abeta, or with RAP, an antagonist of the low-density lipoprotein receptor family, effectively blocks Abeta degradation by astrocytes. Phase-contrast and confocal microscopy show that Apoe(-/-) astrocytes do not respond to or internalize Abeta deposits to the same extent as do wild-type astrocytes. Thus, Apoe seems to be important in the degradation and clearance of deposited Abeta species by astrocytes, a process that may be impaired in Alzheimer disease.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Apolipoproteínas E/fisiologia , Astrócitos/metabolismo , Animais , Agregação Celular , Sobrevivência Celular , Células Cultivadas , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/fisiologia , Camundongos , Camundongos Endogâmicos C57BL
19.
Front Immunol ; 12: 790469, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34956222

RESUMO

Background: Neutralizing monoclonal antibodies (mAbs) to SARS-CoV-2 are clinically efficacious when administered early, decreasing hospitalization and mortality in patients with mild or moderate COVID-19. We investigated the effects of receiving mAbs (bamlanivimab alone and bamlanivimab and etesevimab together) after SARS-CoV-2 infection on the endogenous immune response. Methods: Longitudinal serum samples were collected from patients with mild or moderate COVID-19 in the BLAZE-1 trial who received placebo (n=153), bamlanivimab alone [700 mg (n=100), 2800 mg (n=106), or 7000 mg (n=98)], or bamlanivimab (2800 mg) and etesevimab (2800 mg) together (n=111). A multiplex Luminex serology assay measured antibody titers against SARS-CoV-2 antigens, including SARS-CoV-2 protein variants that evade bamlanivimab or etesevimab binding, and SARS-CoV-2 pseudovirus neutralization assays were performed. Results: The antibody response in patients who received placebo or mAbs had a broad specificity. Titer change from baseline against a receptor-binding domain mutant (Spike-RBD E484Q), as well as N-terminal domain (Spike-NTD) and nucleocapsid protein (NCP) epitopes were 1.4 to 4.1 fold lower at day 15-85 in mAb recipients compared with placebo. Neutralizing activity of day 29 sera from bamlanivimab monotherapy cohorts against both spike E484Q and beta variant (B.1.351) were slightly reduced compared with placebo (by a factor of 3.1, p=0.001, and 2.9, p=0.002, respectively). Early viral load correlated with the subsequent antibody titers of the native, unmodified humoral response (p<0.0001 at Day 15, 29, 60 and 85 for full-length spike). Conclusions: Patients with mild or moderate COVID-19 treated with mAbs develop a wide breadth of antigenic responses to SARS-CoV-2. Small reductions in titers and neutralizing activity, potentially due to a decrease in viral load following mAb treatment, suggest minimal impact of mAb treatment on the endogenous immune response.


Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Anticorpos Monoclonais/uso terapêutico , Anticorpos Neutralizantes/uso terapêutico , Anticorpos Antivirais/imunologia , Tratamento Farmacológico da COVID-19 , COVID-19/imunologia , Adulto , Anticorpos Neutralizantes/imunologia , Antivirais/uso terapêutico , Combinação de Medicamentos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , SARS-CoV-2
20.
Sci Transl Med ; 13(593)2021 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-33820835

RESUMO

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) poses a public health threat for which preventive and therapeutic agents are urgently needed. Neutralizing antibodies are a key class of therapeutics that may bridge widespread vaccination campaigns and offer a treatment solution in populations less responsive to vaccination. Here, we report that high-throughput microfluidic screening of antigen-specific B cells led to the identification of LY-CoV555 (also known as bamlanivimab), a potent anti-spike neutralizing antibody from a hospitalized, convalescent patient with coronavirus disease 2019 (COVID-19). Biochemical, structural, and functional characterization of LY-CoV555 revealed high-affinity binding to the receptor-binding domain, angiotensin-converting enzyme 2 binding inhibition, and potent neutralizing activity. A pharmacokinetic study of LY-CoV555 conducted in cynomolgus monkeys demonstrated a mean half-life of 13 days and a clearance of 0.22 ml hour-1 kg-1, consistent with a typical human therapeutic antibody. In a rhesus macaque challenge model, prophylactic doses as low as 2.5 mg/kg reduced viral replication in the upper and lower respiratory tract in samples collected through study day 6 after viral inoculation. This antibody has entered clinical testing and is being evaluated across a spectrum of COVID-19 indications, including prevention and treatment.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais/imunologia , COVID-19 , Animais , Anticorpos Neutralizantes/imunologia , COVID-19/imunologia , COVID-19/prevenção & controle , Macaca mulatta , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA