Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
EMBO J ; 37(4)2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29348324

RESUMO

Newborn neurons maintain a very simple, bipolar shape, while they migrate from their birthplace toward their destinations in the brain, where they differentiate into mature neurons with complex dendritic morphologies. Here, we report a mechanism by which the termination of neuronal migration is maintained in the postnatal olfactory bulb (OB). During neuronal deceleration in the OB, newborn neurons transiently extend a protrusion from the proximal part of their leading process in the resting phase, which we refer to as a filopodium-like lateral protrusion (FLP). The FLP formation is induced by PlexinD1 downregulation and local Rac1 activation, which coincide with microtubule reorganization and the pausing of somal translocation. The somal translocation of resting neurons is suppressed by microtubule polymerization within the FLP The timing of neuronal migration termination, controlled by Sema3E-PlexinD1-Rac1 signaling, influences the final positioning, dendritic patterns, and functions of the neurons in the OB These results suggest that PlexinD1 signaling controls FLP formation and the termination of neuronal migration through a precise control of microtubule dynamics.


Assuntos
Movimento Celular , Extensões da Superfície Celular/fisiologia , Glicoproteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurogênese , Neurônios/citologia , Neurônios/fisiologia , Animais , Animais Recém-Nascidos , Células Cultivadas , Proteínas do Citoesqueleto , Glicoproteínas/genética , Glicoproteínas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Glicoproteínas de Membrana/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/genética , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Semaforinas , Transdução de Sinais , Proteínas rac1 de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP/metabolismo
2.
PLoS Comput Biol ; 17(6): e1008398, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34133418

RESUMO

Blood flow governs transport of oxygen and nutrients into tissues. Hypoxic tissues secrete VEGFs to promote angiogenesis during development and in tissue homeostasis. In contrast, tumors enhance pathologic angiogenesis during growth and metastasis, suggesting suppression of tumor angiogenesis could limit tumor growth. In line with these observations, various factors have been identified to control vessel formation in the last decades. However, their impacts on the vascular transport properties of oxygen remain elusive. Here, we take a computational approach to examine the effects of vascular branching on blood flow in the growing vasculature. First of all, we reconstruct a 3D vascular model from the 2D confocal images of the growing vasculature at postnatal day 5 (P5) mouse retina, then simulate blood flow in the vasculatures, which are obtained from the gene targeting mouse models causing hypo- or hyper-branching vascular formation. Interestingly, hyper-branching morphology attenuates effective blood flow at the angiogenic front, likely promoting tissue hypoxia. In contrast, vascular hypo-branching enhances blood supply at the angiogenic front of the growing vasculature. Oxygen supply by newly formed blood vessels improves local hypoxia and decreases VEGF expression at the angiogenic front during angiogenesis. Consistent with the simulation results indicating improved blood flow in the hypo-branching vasculature, VEGF expression around the angiogenic front is reduced in those mouse retinas. Conversely, VEGF expression is enhanced in the angiogenic front of hyper-branching vasculature. Our results indicate the importance of detailed flow analysis in evaluating the vascular transport properties of branching morphology of the blood vessels.


Assuntos
Neovascularização Patológica , Vasos Retinianos/fisiopatologia , Animais , Camundongos , Camundongos Transgênicos , Vasos Retinianos/anatomia & histologia , Vasos Retinianos/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
3.
EMBO Rep ; 19(9)2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30018153

RESUMO

Impaired cell polarity is a hallmark of diseased tissue. In the cardiovascular system, laminar blood flow induces endothelial planar cell polarity, represented by elongated cell shape and asymmetric distribution of intracellular organelles along the axis of blood flow. Disrupted endothelial planar polarity is considered to be pro-inflammatory, suggesting that the establishment of endothelial polarity elicits an anti-inflammatory response. However, a causative relationship between polarity and inflammatory responses has not been firmly established. Here, we find that a cell polarity protein, PAR-3, is an essential gatekeeper of GSK3ß activity in response to laminar blood flow. We show that flow-induced spatial distribution of PAR-3/aPKCλ and aPKCλ/GSK3ß complexes controls local GSK3ß activity and thereby regulates endothelial planar polarity. The spatial information for GSK3ß activation is essential for flow-dependent polarity to the flow axis, but is not necessary for flow-induced anti-inflammatory response. Our results shed light on a novel relationship between endothelial polarity and vascular homeostasis highlighting avenues for novel therapeutic strategies.


Assuntos
Moléculas de Adesão Celular/fisiologia , Proteínas de Ciclo Celular/fisiologia , Polaridade Celular/fisiologia , Endotélio Vascular/metabolismo , Inflamação/metabolismo , Proteínas de Membrana/fisiologia , Proteínas Adaptadoras de Transdução de Sinal , Animais , Aorta/fisiopatologia , Aterosclerose/metabolismo , Aterosclerose/patologia , Proteínas do Citoesqueleto/metabolismo , Técnicas de Silenciamento de Genes , Células HEK293 , Homeostase/fisiologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Transgênicos , Proteínas Nucleares/metabolismo , Proteína Quinase C/metabolismo , Fluxo Sanguíneo Regional , Proteínas Repressoras/metabolismo , Transdução de Sinais
4.
J Neurosci ; 38(19): 4598-4609, 2018 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-29661967

RESUMO

In the rodent olfactory system, neuroblasts produced in the ventricular-subventricular zone of the postnatal brain migrate tangentially in chain-like cell aggregates toward the olfactory bulb (OB) through the rostral migratory stream (RMS). After reaching the OB, the chains are dissociated and the neuroblasts migrate individually and radially toward their final destination. The cellular and molecular mechanisms controlling cell-cell adhesion during this detachment remain unclear. Here we report that Fyn, a nonreceptor tyrosine kinase, regulates the detachment of neuroblasts from chains in the male and female mouse OB. By performing chemical screening and in vivo loss-of-function and gain-of-function experiments, we found that Fyn promotes somal disengagement from the chains and is involved in neuronal migration from the RMS into the granule cell layer of the OB. Fyn knockdown or Dab1 (disabled-1) deficiency caused p120-catenin to accumulate and adherens junction-like structures to be sustained at the contact sites between neuroblasts. Moreover, a Fyn and N-cadherin double-knockdown experiment indicated that Fyn regulates the N-cadherin-mediated cell adhesion between neuroblasts. These results suggest that the Fyn-mediated control of cell-cell adhesion is critical for the detachment of chain-forming neuroblasts in the postnatal OB.SIGNIFICANCE STATEMENT In the postnatal brain, newly born neurons (neuroblasts) migrate in chain-like cell aggregates toward their destination, where they are dissociated into individual cells and mature. The cellular and molecular mechanisms controlling the detachment of neuroblasts from chains are not understood. Here we show that Fyn, a nonreceptor tyrosine kinase, promotes the somal detachment of neuroblasts from chains, and that this regulation is critical for the efficient migration of neuroblasts to their destination. We further show that Fyn and Dab1 (disabled-1) decrease the cell-cell adhesion between chain-forming neuroblasts, which involves adherens junction-like structures. Our results suggest that Fyn-mediated regulation of the cell-cell adhesion of neuroblasts is critical for their detachment from chains in the postnatal brain.


Assuntos
Encéfalo/fisiologia , Células-Tronco Neurais/fisiologia , Proteínas Proto-Oncogênicas c-fyn/fisiologia , Animais , Encéfalo/citologia , Encéfalo/crescimento & desenvolvimento , Caderinas/genética , Cateninas/metabolismo , Adesão Celular/fisiologia , Movimento Celular/genética , Feminino , Técnicas de Silenciamento de Genes , Masculino , Camundongos , Proteínas do Tecido Nervoso/genética , Bulbo Olfatório/citologia , Bulbo Olfatório/crescimento & desenvolvimento , Bulbo Olfatório/fisiologia
5.
Cancer Sci ; 110(5): 1780-1789, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30801864

RESUMO

The expression of immune checkpoint proteins such as programmed cell death protein 1 (PD-1) and its ligand (PD-L1) has been shown to correlate with patient prognosis in many malignant cancers. The expression of PD-L1 is controlled by c-Myc; however, further upstream regulation of PD-L1 expression is largely unknown. We have previously shown that atypical protein kinase C lambda/iota (aPKCλ) phosphorylates the Forkhead box protein O1 (FoxO1) transcription factor at Ser218 to suppress its DNA-binding ability, thereby regulating c-Myc expression and controlling physiologic and pathologic endothelial proliferation. The presence of phosphorylation of FoxO1 at Ser218 (pSer218 FoxO1) in cutaneous angiosarcoma (CAS) strongly correlates with poor patient prognosis. Here, we reported that patients with PD-L1+ cells in CAS lesions showed significantly worse prognosis compared to those that were PD-L1- . Expression of PD-L1 correlated with that of aPKCλ or the presence of pSer218FoxO1. Moreover, suppression of aPKCλ expression or inhibition of its activity in HUVECs or AS-M, an established human angiosarcoma cell line, resulted in decreased PD-L1 expression. Our results suggest that combined treatment with immune checkpoint inhibitors and aPKCλ inhibitors could be a novel treatment strategy for CAS patients.


Assuntos
Antígeno B7-H1/metabolismo , Proteína Forkhead Box O1/metabolismo , Hemangiossarcoma/metabolismo , Isoenzimas/metabolismo , Proteína Quinase C/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Neoplasias Cutâneas/metabolismo , Idoso , Idoso de 80 Anos ou mais , Linhagem Celular Tumoral , Feminino , Proteína Forkhead Box O1/química , Regulação Neoplásica da Expressão Gênica , Células Endoteliais da Veia Umbilical Humana , Humanos , Masculino , Fosforilação , Prognóstico , Serina/metabolismo
6.
J Neurochem ; 128(6): 790-7, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24188721

RESUMO

New neurons generated in the ventricular-subventricular zone in the post-natal brain travel toward the olfactory bulb by using a collective cell migration process called 'chain migration.' These new neurons show a saltatory movement of their soma, suggesting that each neuron cycles through periods of 'rest' during migration. Here, we investigated the role of the resting neurons in chain migration using post-natal mouse brain, and found that they undergo a dynamic morphological change, in which a deep indentation forms in the cell body. Inhibition of Rac1 activity resulted in less indentation of the new neurons in vivo. Live cell imaging using a Förster resonance energy transfer biosensor revealed that Rac1 was activated at the sites of contact between actively migrating and resting new neurons. On the cell surface of resting neurons, Rac1 activation coincided with the formation of the indentation. Furthermore, Rac1 knockdown prevented the indentation from forming and impaired migration along the resting neurons. These results suggest that Rac1 regulates a morphological change in the resting neurons, which allows them to serve as a migratory scaffold, and thereby non-cell-autonomously promotes chain migration.


Assuntos
Comunicação Celular/fisiologia , Movimento Celular/fisiologia , Ventrículos Cerebrais/citologia , Neurônios/fisiologia , Neuropeptídeos/fisiologia , Bulbo Olfatório/citologia , Proteínas rac1 de Ligação ao GTP/fisiologia , Animais , Ventrículos Cerebrais/crescimento & desenvolvimento , Camundongos , Neurogênese/fisiologia , Bulbo Olfatório/crescimento & desenvolvimento , Técnicas de Cultura de Órgãos , Imagem com Lapso de Tempo
7.
Biochem Biophys Res Commun ; 442(1-2): 16-21, 2013 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-24211587

RESUMO

Neural stem cells continuously generate new neurons in the ventricular-subventricular zone (V-SVZ) of the postnatal and adult mammalian brain. New neurons born in the rodent V-SVZ migrate toward the olfactory bulb (OB), where they differentiate into interneurons. To reveal novel intracellular molecular mechanisms that control postnatal neuronal migration, we performed a global proteomic search for proteins interacting with Girdin, an essential protein for postnatal neuronal migration. Using GST pull-down and LC-MS/MS shotgun analysis, we identified cytoskeletal proteins, cytoskeleton-binding proteins, and signal-transduction proteins as possible participants in neuronal migration. Our results suggest that Girdin and Girdin-interacting proteins control neuronal migration by regulating actin and/or microtubule dynamics.


Assuntos
Encéfalo/crescimento & desenvolvimento , Movimento Celular , Proteínas dos Microfilamentos/metabolismo , Células-Tronco Neurais/fisiologia , Neurogênese , Neurônios/fisiologia , Proteínas de Transporte Vesicular/metabolismo , Animais , Encéfalo/citologia , Proteínas do Citoesqueleto/metabolismo , Camundongos , Camundongos Endogâmicos ICR , Células-Tronco Neurais/citologia , Neurônios/citologia , Proteômica , Ratos , Ratos Wistar
8.
J Neurosci ; 31(22): 8109-22, 2011 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-21632933

RESUMO

In postnatally developing and adult brains, interneurons of the olfactory bulb (OB) are continuously generated at the subventricular zone of the forebrain. The newborn neuroblasts migrate tangentially to the OB through a well defined pathway, the rostral migratory stream (RMS), where the neuroblasts undergo collective migration termed "chain migration." The cell-intrinsic regulatory mechanism of neuroblast chain migration, however, has not been uncovered. Here we show that mice lacking the actin-binding Akt substrate Girdin (a protein that interacts with Disrupted-In-Schizophrenia 1 to regulate neurogenesis in the dentate gyrus) have profound defects in neuroblast chain migration along the RMS. Analysis of two gene knock-in mice harboring Girdin mutants identified unique amino acid residues in Girdin's C-terminal domain that are responsible for the regulation of neuroblast chain migration but revealed no apparent requirement of Girdin phosphorylation by Akt. Electron microscopic analyses demonstrated the involvement of Girdin in neuroblast cell-cell interactions. These findings suggest that Girdin is an important intrinsic factor that specifically governs neuroblast chain migration along the RMS.


Assuntos
Encéfalo/fisiologia , Movimento Celular/fisiologia , Proteínas dos Microfilamentos/fisiologia , Células-Tronco Neurais/fisiologia , Bulbo Olfatório/fisiologia , Proteínas de Transporte Vesicular/fisiologia , Animais , Encéfalo/anatomia & histologia , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Encéfalo/ultraestrutura , Movimento Celular/genética , Células Cultivadas , Técnicas de Introdução de Genes/métodos , Junções Intercelulares/genética , Junções Intercelulares/ultraestrutura , Interneurônios/metabolismo , Interneurônios/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Mutação , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/fisiologia , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/ultraestrutura , Bulbo Olfatório/anatomia & histologia , Bulbo Olfatório/crescimento & desenvolvimento , Bulbo Olfatório/metabolismo , Bulbo Olfatório/ultraestrutura , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
9.
Sci Rep ; 12(1): 20628, 2022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-36450786

RESUMO

Amid the Coronavirus Disease 2019 pandemic, we aimed to demonstrate the accuracy of the fingertip whole blood sampling test (FWT) in measuring the antibody titer and uncovering its dynamics shortly after booster vaccination. Mokobio SARS-CoV-2 IgM & IgG Quantum Dot immunoassay (Mokobio Biotechnology R&D Center Inc., MD, USA) was used as a point-of-care FWT in 226 health care workers (HCWs) who had received two doses of the BNT162b2 mRNA vaccine (Pfizer-BioNTech) at least 8 months prior. Each participant tested their antibody titers before and after the third-dose booster up to 14-days. The effect of the booster was observed as early as the fourth day after vaccination, which exceeded the detection limit (> 30,000 U/mL) by 2.3% on the fifth day, 12.2% on the sixth day, and 22.5% after the seventh day. Significant positive correlations were observed between the pre- and post-vaccination (the seventh and eighth days) antibody titers (correlation coefficient, 0.405; p < 0.001). FWT is useful for examining antibody titers as a point-of-care test. Rapid response of antibody titer started as early as the fourth day post-vaccination, while the presence of weak responders to BNT162b2 vaccine was indicated.


Assuntos
Vacina BNT162 , COVID-19 , Humanos , Vacinas contra COVID-19 , RNA Mensageiro , Cinética , Sistemas Automatizados de Assistência Junto ao Leito , COVID-19/diagnóstico , COVID-19/prevenção & controle , SARS-CoV-2/genética , Testes Imediatos , Vacinação , Imunoglobulina G , Anticorpos Antivirais , Vacinas de mRNA
10.
Hum Mol Genet ; 17(20): 3212-22, 2008 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-18658164

RESUMO

Schizophrenia is a complex mental disorder with a fairly high degree of heritability. Although the causes of schizophrenia remain unclear, it is now widely accepted that it is a neurodevelopmental and neurodegenerative disorder involving disconnectivity and disorder of the synapses. Disrupted-in-schizophrenia 1 (DISC1) is a promising candidate susceptibility gene involved in neurodevelopment, including maturation of the cerebral cortex. To identify other susceptibility genes for schizophrenia, we screened for DISC1-interacting molecules [NudE-like (NUDEL), Lissencephaly-1 (LIS1), 14-3-3epsilon (YWHAE), growth factor receptor bound protein 2 (GRB2) and Kinesin family 5A of Kinesen1 (KIF5A)], assessing a total of 25 tagging single-nucleotide polymorphisms (SNPs) in a Japanese population. We identified a YWHAE SNP (rs28365859) that showed a highly significant difference between case and control samples, with higher minor allele frequencies in controls (P(allele) = 1.01 x 10(-5) and P(genotype) = 4.08 x 10(-5) in 1429 cases and 1728 controls). Both messenger RNA transcription and protein expression of 14-3-3epsilon were also increased in the lymphocytes of healthy control subjects harboring heterozygous and homozygous minor alleles compared with homozygous major allele subjects. To further investigate a potential role for YWHAE in schizophrenia, we studied Ywhae(+/-) mice in which the level of 14-3-3epsilon protein is reduced to 50% of that in wild-type littermates. These mice displayed weak defects in working memory in the eight-arm radial maze and moderately enhanced anxiety-like behavior in the elevated plus-maze. Our results suggest that YWHAE is a possible susceptibility gene that functions protectively in schizophrenia.


Assuntos
Proteínas 14-3-3/genética , Esquizofrenia/genética , Proteínas 14-3-3/fisiologia , Alelos , Animais , Ansiedade/genética , Células CHO , Células COS , Estudos de Casos e Controles , Chlorocebus aethiops , Cricetinae , Cricetulus , Modelos Animais de Doenças , Expressão Gênica , Frequência do Gene , Predisposição Genética para Doença , Heterozigoto , Homozigoto , Humanos , Japão , Desequilíbrio de Ligação , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas , Esquizofrenia/etiologia
11.
Synapse ; 64(12): 948-53, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20815037

RESUMO

Recent research in the etiology of schizophrenia revealed that there may be some neurodevelopmental failures such as neuronal network incompetence in the brain of this disease, and neurotransmitters cannot function accurately or adequately. But, it is unknown precisely what kinds of deficit in neurotransmission may be existed histopathologically. We investigated the expression of vesicle monoamine transporter 2 (VMAT2), which has a significant role in neurotransmission, in the hippocampal formation of the animal model of schizophrenia, 14-3-3 epsilon hetero knockout (KO) mouse, using an immunohistochemical staining technique to clarify the neuronal abnormalities in the model animal. As a result, the expression of VMAT2 was increased significantly in the hippocampal formation of 14-3-3 epsilon hetero KO mice compared to that of the wild-type littermates. In conclusion, these findings might be related the pathophysiology of this disease includes a monoaminergic transmission abnormality, based on the investigation in a genetically-modified mouse as schizophrenic model.


Assuntos
Monoaminas Biogênicas/metabolismo , Modelos Animais de Doenças , Hipocampo/metabolismo , Esquizofrenia/genética , Esquizofrenia/metabolismo , Proteínas Vesiculares de Transporte de Monoamina/metabolismo , Proteínas 14-3-3/genética , Animais , Axônios/metabolismo , Feminino , Imuno-Histoquímica , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Knockout
12.
Nat Commun ; 11(1): 1343, 2020 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-32165640

RESUMO

Enlarged vestibular aqueduct (EVA) is one of the most commonly identified inner ear malformations in hearing loss patients including Pendred syndrome. While biallelic mutations of the SLC26A4 gene, encoding pendrin, causes non-syndromic hearing loss with EVA or Pendred syndrome, a considerable number of patients appear to carry mono-allelic mutation. This suggests faulty pendrin regulatory machinery results in hearing loss. Here we identify EPHA2 as another causative gene of Pendred syndrome with SLC26A4. EphA2 forms a protein complex with pendrin controlling pendrin localization, which is disrupted in some pathogenic forms of pendrin. Moreover, point mutations leading to amino acid substitution in the EPHA2 gene are identified from patients bearing mono-allelic mutation of SLC26A4. Ephrin-B2 binds to EphA2 triggering internalization with pendrin inducing EphA2 autophosphorylation weakly. The identified EphA2 mutants attenuate ephrin-B2- but not ephrin-A1-induced EphA2 internalization with pendrin. Our results uncover an unexpected role of the Eph/ephrin system in epithelial function.


Assuntos
Efrina-A2/genética , Bócio Nodular/genética , Perda Auditiva Neurossensorial/genética , Transportadores de Sulfato/genética , Sequência de Aminoácidos , Animais , Efrina-A1/genética , Efrina-A1/metabolismo , Efrina-A2/química , Efrina-A2/metabolismo , Efrina-B2/genética , Efrina-B2/metabolismo , Bócio Nodular/metabolismo , Perda Auditiva Neurossensorial/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação Puntual , Ligação Proteica , Receptor EphA2 , Transportadores de Sulfato/química , Transportadores de Sulfato/metabolismo
13.
J Neurochem ; 110(5): 1567-74, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19573021

RESUMO

Schizophrenia is a complex mental disorder with fairly high level of heritability. Dystrobrevin binding protein 1, a gene encoding dysbindin protein, is a susceptibility gene for schizophrenia that was identified by family-based association analysis. Recent studies revealed that dysbindin is involved in the exocytosis and/or formation of synaptic vesicles. However, the molecular function of dysbindin in synaptic transmission is largely unknown. To investigate the signaling pathway in which dysbindin is involved, we isolated dysbindin-interacting molecules from rat brain lysate by combining ammonium sulfate precipitation and dysbindin-affinity column chromatography, and identified dysbindin-interacting proteins by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and liquid chromatography-tandem mass spectrometry. Proteins involved in protein localization process, including Munc18-1, were identified as dysbindin-interacting proteins. Munc18-1 was co-immunoprecipitated with dysbindin from rat brain lysate, and directly interacted with dysbindin in vitro. In primary cultured rat hippocampal neurons, a part of dysbindin was co-localized with Munc18-1 at pre-synaptic terminals. Our result suggests a role for dysbindin in synaptic vesicle exocytosis via interaction with Munc18-1.


Assuntos
Proteínas de Transporte/metabolismo , Proteômica/métodos , Esquizofrenia/metabolismo , Animais , Proteínas de Transporte/genética , Disbindina , Proteínas Associadas à Distrofina , Exocitose/genética , Hipocampo/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Munc18/genética , Proteínas Munc18/metabolismo , Ligação Proteica/genética , Ratos , Esquizofrenia/genética
14.
J Neurosci ; 27(1): 4-14, 2007 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-17202467

RESUMO

Disrupted-in-Schizophrenia-1 (DISC1) is a candidate gene for susceptibility of schizophrenia. In the accompanying paper (Taya et al., 2006), we report that DISC1 acts as a linker between Kinesin-1 and DISC1-interacting molecules, such as NudE-like, lissencephaly-1, and 14-3-3epsilon. Here we identified growth factor receptor bound protein 2 (Grb2) as a novel DISC1-interacting molecule. Grb2 acts as an adaptor molecule that links receptor tyrosine kinases and the Ras-extracellular signal-regulated kinase (ERK) pathway. DISC1 formed a ternary complex with Grb2 and kinesin heavy chain KIF5A of Kinesin-1. In cultured rat hippocampal neurons, both DISC1 and Grb2 partially colocalized at the distal part of axons. Knockdown of DISC1 or kinesin light chains of Kinesin-1 by RNA interference inhibited the accumulation of Grb2 from the distal part of axons. Knockdown of DISC1 also inhibited the neurotrophin-3 (NT-3)-induced phosphorylation of ERK-1/2 at the distal part of axons and inhibited NT-3-induced axon elongation. These results suggest that DISC1 is required for NT-3-induced axon elongation and ERK activation at the distal part of axons by recruiting Grb2 to axonal tips.


Assuntos
Axônios/metabolismo , Axônios/ultraestrutura , Proteína Adaptadora GRB2/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurotrofina 3/administração & dosagem , Animais , Axônios/efeitos dos fármacos , Transporte Biológico Ativo/efeitos dos fármacos , Encéfalo/citologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Células COS , Crescimento Celular , Células Cultivadas , Chlorocebus aethiops , Relação Dose-Resposta a Droga , Homeostase/efeitos dos fármacos , Homeostase/fisiologia , Mapeamento de Interação de Proteínas , Ratos
15.
J Neurosci ; 27(1): 15-26, 2007 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-17202468

RESUMO

Disrupted-In-Schizophrenia 1 (DISC1) is a candidate gene for susceptibility to schizophrenia. DISC1 is reported to interact with NudE-like (NUDEL), which forms a complex with lissencephaly-1 (LIS1) and 14-3-3epsilon. 14-3-3epsilon is involved in the proper localization of NUDEL and LIS1 in axons. Although the functional significance of this complex in neuronal development has been reported, the transport mechanism of the complex into axons and their functions in axon formation remain essentially unknown. Here we report that Kinesin-1, a motor protein of anterograde axonal transport, was identified as a novel DISC1-interacting molecule. DISC1 directly interacted with kinesin heavy chain of Kinesin-1. Kinesin-1 interacted with the NUDEL/LIS1/14-3-3epsilon complex through DISC1, and these molecules localized mainly at cell bodies and partially in the distal part of the axons. DISC1 partially colocalized with Kinesin family member 5A, NUDEL, LIS1, and 14-3-3epsilon in the growth cones. The knockdown of DISC1 by RNA interference or the dominant-negative form of DISC1 inhibited the accumulation of NUDEL, LIS1, and 14-3-3epsilon at the axons and axon elongation. The knockdown or the dominant-negative form of Kinesin-1 inhibited the accumulation of DISC1 at the axons and axon elongation. Furthermore, the knockdown of NUDEL or LIS1 inhibited axon elongation. Together, these results indicate that DISC1 regulates the localization of NUDEL/LIS1/14-3-3epsilon complex into the axons as a cargo receptor for axon elongation.


Assuntos
Proteínas 14-3-3/metabolismo , Axônios/metabolismo , Axônios/ultraestrutura , Cisteína Endopeptidases/metabolismo , Cinesinas/metabolismo , Proteínas Motores Moleculares/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Animais , Transporte Biológico Ativo , Células COS , Crescimento Celular , Chlorocebus aethiops , Homeostase/fisiologia , Células PC12 , Ratos
16.
Nat Commun ; 9(1): 5357, 2018 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-30559384

RESUMO

Strict regulation of proliferation is vital for development, whereas unregulated cell proliferation is a fundamental characteristic of cancer. The polarity protein atypical protein kinase C lambda/iota (aPKCλ) is associated with cell proliferation through unknown mechanisms. In endothelial cells, suppression of aPKCλ impairs proliferation despite hyperactivated mitogenic signaling. Here we show that aPKCλ phosphorylates the DNA binding domain of forkhead box O1 (FoxO1) transcription factor, a gatekeeper of endothelial growth. Although mitogenic signaling excludes FoxO1 from the nucleus, consequently increasing c-Myc abundance and proliferation, aPKCλ controls c-Myc expression via FoxO1/miR-34c signaling without affecting its localization. We find this pathway is strongly activated in the malignant vascular sarcoma, angiosarcoma, and aPKC inhibition reduces c-Myc expression and proliferation of angiosarcoma cells. Moreover, FoxO1 phosphorylation at Ser218 and aPKC expression correlates with poor patient prognosis. Our findings may provide a potential therapeutic strategy for treatment of malignant cancers, like angiosarcoma.


Assuntos
Proliferação de Células/fisiologia , Células Endoteliais/metabolismo , Proteína Forkhead Box O1/metabolismo , Hemangiossarcoma/patologia , Isoenzimas/metabolismo , Proteína Quinase C/metabolismo , Animais , Linhagem Celular , Proteínas de Ligação a DNA/metabolismo , Proteína Forkhead Box O1/genética , Regulação da Expressão Gênica , Células HEK293 , Hemangiossarcoma/genética , Células Endoteliais da Veia Umbilical Humana , Humanos , Isoenzimas/genética , Camundongos , Camundongos Knockout , MicroRNAs/genética , Fosforilação , Proteína Quinase C/genética , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Interferência de RNA , RNA Interferente Pequeno/genética
17.
Gene ; 400(1-2): 166-73, 2007 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-17681718

RESUMO

In C. elegans, mosaic analysis is a powerful genetic tool for determining in which tissue or specific cells a gene of interest is required. For traditional mosaic analysis, a loss-of-function mutant and a genomic fragment that can rescue the mutant phenotype are required. Here we establish an easy and rapid mosaic system using RNAi (RNA mediated interference), using a rde-1 mutant that is resistant to RNAi. Tissue-specific expression of the wild type rde-1 cDNA in rde-1 mutants limits RNAi sensitivity to a specific tissue. We established hypodermal-and muscle-specific RNAi systems by expressing rde-1 cDNA under the control of the lin-26 and hlh-1 promoters, respectively. We confirmed tissue-specific RNAi using two assays: (1) tissue-specific knockdown of GFP expression, and (2) phenocopy of mutations in essential genes that were previously known to function in a tissue-specific manner. We also applied this system to an essential gene, ajm-1, expressed in hypodermis and gut, and show that lethality in ajm-1 mutants is due to loss of expression in hypodermal cells. Although we demonstrate tissue-specific RNAi in hypodermis and muscle, this method could be easily applied to other tissues.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Especificidade de Órgãos , Interferência de RNA , Animais , Proteínas de Caenorhabditis elegans/fisiologia , Genes Letais , Músculos/metabolismo , Mutação , Fenótipo , Regiões Promotoras Genéticas
19.
Nat Neurosci ; 18(5): 698-707, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25821909

RESUMO

Disrupted-in-schizophrenia 1 (DISC1) is a susceptibility gene for major psychiatric disorders, including schizophrenia. DISC1 has been implicated in neurodevelopment in relation to scaffolding signal complexes. Here we used proteomic analysis to screen for DISC1 interactors and identified several RNA-binding proteins, such as hematopoietic zinc finger (HZF), that act as components of RNA-transporting granules. HZF participates in the mRNA localization of inositol-1,4,5-trisphosphate receptor type 1 (ITPR1), which plays a key role in synaptic plasticity. DISC1 colocalizes with HZF and ITPR1 mRNA in hippocampal dendrites and directly associates with neuronal mRNAs, including ITPR1 mRNA. The binding potential of DISC1 for ITPR1 mRNA is facilitated by HZF. Studies of Disc1-knockout mice have revealed that DISC1 regulates the dendritic transport of Itpr1 mRNA by directly interacting with its mRNA. The DISC1-mediated mRNA regulation is involved in synaptic plasticity. We show that DISC1 binds ITPR1 mRNA with HZF, thereby regulating its dendritic transport for synaptic plasticity.


Assuntos
Hipocampo/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/genética , Proteínas do Tecido Nervoso/fisiologia , Plasticidade Neuronal/fisiologia , Proteínas/fisiologia , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/fisiologia , Regiões 3' não Traduzidas/genética , Animais , Transporte Biológico , Grânulos Citoplasmáticos/metabolismo , Dendritos/metabolismo , Dendritos/ultraestrutura , Hipocampo/citologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Plasticidade Neuronal/genética , Ligação Proteica , Mapeamento de Interação de Proteínas , Interferência de RNA , Proteínas de Ligação a RNA/genética , Proteínas Recombinantes de Fusão/metabolismo
20.
Nat Commun ; 5: 4532, 2014 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-25074242

RESUMO

Throughout life, new neurons generated in the ventricular-subventricular zone take the long journey to the olfactory bulb. The intracellular mechanisms that precisely control the neurons' migration speed, enabling their well-organized movement, remain unclear. Rho signalling is known to affect the morphology and movement of various cell types, including neurons. Here we identify Gem-interacting protein (Gmip), a RhoA-specific GTPase-activating protein, as a key factor in saltatory neuronal migration. RhoA is activated at the proximal leading process of migrating neurons, where Gmip is also localized and negatively regulates RhoA. Gmip controls the saltatory movement of neurons that regulate their migration speed and 'stop' positions in the olfactory bulb, thereby altering the neural circuitry. This study demonstrates that Gmip serves as a brake for the RhoA-mediated movement of neuronal somata, and highlights the significance of speed control in the well-organized neuronal migration and the maintenance of neuronal circuits in the postnatal brain.


Assuntos
Encéfalo/citologia , Encéfalo/crescimento & desenvolvimento , Movimento Celular/fisiologia , Proteínas Ativadoras de GTPase/metabolismo , Neurônios/fisiologia , Transdução de Sinais/fisiologia , Proteína rhoA de Ligação ao GTP/metabolismo , Animais , Western Blotting , Bromodesoxiuridina , Imuno-Histoquímica , Imunoprecipitação , Espectrometria de Massas , Camundongos , Camundongos Knockout , Proteínas dos Microfilamentos/metabolismo , Microscopia Confocal , Interferência de RNA , Ratos , Ratos Wistar , Estatísticas não Paramétricas , Imagem com Lapso de Tempo , Proteínas de Transporte Vesicular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA