Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chembiochem ; 25(16): e202400226, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-38761032

RESUMO

Human cystatin C (hCC) is a physiologically important protein that serves as intra- and extracellular cysteine proteinase inhibitor in homeostasis. However, in pathological states it dimerizes and further oligomerizes accumulating into a toxic amyloid. HCC forms an active monomer in the extracellular space and becomes an inactive dimer when internalized in cellular organelles. However, hCC cell penetration and its oligomeric state during this process are not well understood. To determine if and how the oligomeric state influences hCC transmembrane migration, we investigated the internalization of the hCC wild type protein as well as three different mutants, which exclusively exist in the monomeric or multimeric state into HeLa cells via confocal fluorescence microscopy. Our results showed that the preferred pathway was endocytosis and that the oligomeric state did not significantly influence the internalization because both monomeric and dimeric hCC migrated into HeLa cells. Considering the differences of the active monomeric and the passive dimeric states of hCC, our findings contribute to a better understanding of the intra and extra cellular functions of hCC and their interaction with cysteine proteases.


Assuntos
Cistatina C , Multimerização Proteica , Humanos , Células HeLa , Cistatina C/química , Cistatina C/metabolismo , Endocitose
2.
Anal Bioanal Chem ; 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849527

RESUMO

Integrating isothermal nucleic acid amplification strategies into immunoassays can significantly decrease analytical limits of detection (LODs). On the other hand, an amplification step adds time, complication, reagents, and costs to the assay format. To evaluate the pros and cons in the context of heterogeneous multistep immunoassays, we quantified prostate-specific antigen (PSA) with and without rolling circle amplification (RCA). In addition, we compared time-gated (TG) with continuous-wave (CW) photoluminescence (PL) detection using a terbium complex and a fluorescein dye, respectively. For both direct (non-amplified) and amplified assays, TG PL detection provided circa four- to eightfold lower LODs, illustrating the importance of autofluorescence background suppression even for multi-wash assay formats. Amplified assays required an approximately 2.4 h longer assay time but led to almost 100-fold lower LODs down to 1.3 pg/mL of PSA. Implementation of TG-FRET (using a Tb-Cy5.5 donor-acceptor pair) into the RCA immunoassay resulted in a slightly higher LOD (3.0 pg/mL), but the ratiometric detection format provided important benefits, such as higher reproducibility, lower standard deviations, and multiplexing capability. Overall, our direct comparison demonstrated the importance of biological background suppression even in heterogeneous assays and the potential of using isothermal RCA for strongly decreasing analytical LODs, making such assays viable alternatives to conventional enzyme-linked immunosorbent assays (ELISAs).

3.
Chem Soc Rev ; 52(22): 7848-7948, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37872857

RESUMO

DNA nanotechnology has now enabled the self-assembly of almost any prescribed 3-dimensional nanoscale structure in large numbers and with high fidelity. These structures are also amenable to site-specific modification with a variety of small molecules ranging from drugs to reporter dyes. Beyond obvious application in biotechnology, such DNA structures are being pursued as programmable nanoscale optical breadboards where multiple different/identical fluorophores can be positioned with sub-nanometer resolution in a manner designed to allow them to engage in multistep excitonic energy-transfer (ET) via Förster resonance energy transfer (FRET) or other related processes. Not only is the ability to create such complex optical structures unique, more importantly, the ability to rapidly redesign and prototype almost all structural and optical analogues in a massively parallel format allows for deep insight into the underlying photophysical processes. Dynamic DNA structures further provide the unparalleled capability to reconfigure a DNA scaffold on the fly in situ and thus switch between ET pathways within a given assembly, actively change its properties, and even repeatedly toggle between two states such as on/off. Here, we review progress in developing these composite materials for potential applications that include artificial light harvesting, smart sensors, nanoactuators, optical barcoding, bioprobes, cryptography, computing, charge conversion, and theranostics to even new forms of optical data storage. Along with an introduction into the DNA scaffolding itself, the diverse fluorophores utilized in these structures, their incorporation chemistry, and the photophysical processes they are designed to exploit, we highlight the evolution of DNA architectures implemented in the pursuit of increased transfer efficiency and the key lessons about ET learned from each iteration. We also focus on recent and growing efforts to exploit DNA as a scaffold for assembling molecular dye aggregates that host delocalized excitons as a test bed for creating excitonic circuits and accessing other quantum-like optical phenomena. We conclude with an outlook on what is still required to transition these materials from a research pursuit to application specific prototypes and beyond.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Pontos Quânticos , Pontos Quânticos/química , Biotecnologia , Corantes Fluorescentes/química , DNA/química
4.
Nano Lett ; 23(6): 2253-2261, 2023 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-36729707

RESUMO

Upconversion nanoparticles (UCNPs) have been frequently applied in Förster resonance energy transfer (FRET) bioanalysis. However, the understanding of how surface coatings, bioconjugation, and dye-surface distance influence FRET biosensing performance has not significantly advanced. Here, we investigated UCNP-to-dye FRET DNA-hybridization assays in H2O and D2O using ∼24 nm large NaYF4:Yb3+,Er3+ UCNPs coated with thin layers of silica (SiO2) or poly(acrylic acid) (PAA). FRET resulted in strong distance-dependent PL intensity changes. However, the PL decay times were not significantly altered because of continuous Yb3+-to-Er3+ energy migration during Er3+-to-dye FRET. Direct bioconjugation of DNA to the thin PAA coating combined with the closest possible dye-surface distance resulted in optimal FRET performance with minor influence from competitive quenching by H2O. The better comprehension of UCNP-to-dye FRET was successfully translated into a microRNA (miR-20a) FRET assay with a limit of detection of 100 fmol in a 80 µL sample volume.


Assuntos
Técnicas Biossensoriais , Nanopartículas , Ácidos Nucleicos , Transferência Ressonante de Energia de Fluorescência , Dióxido de Silício , Técnicas Biossensoriais/métodos
5.
Angew Chem Int Ed Engl ; : e202409852, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39007225

RESUMO

Understanding the mechanisms of assembly and disassembly of macromolecular structures in cells relies on solving biomolecular interactions. However, those interactions often remain unclear because tools to track molecular dynamics are not sufficiently resolved in time or space. In this study, we present a straightforward method for resolving inter- and intra-molecular interactions in cell adhesive machinery, using quantum dot (QD) based Förster resonance energy transfer (FRET) nanosensors. Using a mechanosensitive protein, talin, one of the major components of focal adhesions, we are investigating the mechanosensing ability of proteins to sense and respond to mechanical stimuli. First, we quantified the distances separating talin and a giant unilamellar vesicle membrane for three talin variants. These variants differ in molecular length. Second, we investigated the mechanosensing capabilities of talin, i.e., its conformational changes due to mechanical stretching initiated by cytoskeleton contraction. Our results suggest that in early focal adhesion, talin undergoes stretching, corresponding to a decrease in the talin-membrane distance of 2.5 nm. We demonstrate that QD-FRET nanosensors can be applied for the sensitive quantification of mechanosensing with a sub-nanometer accuracy.

6.
Acc Chem Res ; 55(4): 551-564, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35084817

RESUMO

The necessity to scrutinize more and more biological molecules and interactions both in solution and on the cellular level has led to an increasing demand for sensitive and specific multiplexed diagnostic analysis. Photoluminescence (PL) detection is ideally suited for multiplexed biosensing and bioimaging because it is rapid and sensitive and there is an almost unlimited choice of fluorophores that provide a large versatility of photophysical properties, including PL intensities, spectra, and lifetimes.The most frequently used technique to detect multiple parameters from a single sample is spectral (or color) multiplexing with different fluorophores, such as organic dyes, fluorescent proteins, quantum dots, or lanthanide nanoparticles and complexes. In conventional PL biosensing approaches, each fluorophore requires a distinct detection channel and excitation wavelength. This drawback can be overcome by Förster resonance energy transfer (FRET) from lanthanide donors to other fluorophore acceptors. The lanthanides' multiple and spectrally narrow emission bands over a broad spectral range can overlap with several different acceptors at once, thereby allowing FRET from one donor to multiple acceptors. The lanthanides' extremely long PL lifetimes provide two important features. First, time-gated (TG) detection allows for efficient suppression of background fluorescence from the biological environment or directly excited acceptors. Second, temporal multiplexing, for which the PL lifetimes are adjusted by the interaction with the FRET acceptor, can be used to determine specific biomolecules and/or their conformation via distinct PL decays. The high signal-to-background ratios, reproducible and precise ratiometric and homogeneous (washing-free) sensing formats, and higher-order multiplexing capabilities of lanthanide-based TG-FRET have resulted in significant advances in the analysis of biomolecular recognition. Applications range from fundamental analysis of biomolecular interactions and conformations to high-throughput and point-of-care in vitro diagnostics and DNA sequencing to advanced optical encoding, using both liquid and solid samples and in situ, in vitro, and in vivo detection with high sensitivity and selectivity.In this Account, we discuss recent advances in lanthanide-based TG-FRET for the development and application of advanced immunoassays, nucleic acid sensing, and fluorescence imaging. In addition to the different spectral and temporal multiplexing approaches, we highlight the importance of the careful design and combination of different biological, organic, and inorganic molecules and nanomaterials for an adjustable FRET donor-acceptor distance that determines the ultimate performance of the diagnostic assays and conformational sensors in their physiological environment. We conclude by sharing our vision on how progress in the development of new sensing concepts, material combinations, and instrumentation can further advance TG-FRET multiplexing and accelerate its translation into routine clinical practice and the investigation of challenging biological systems.


Assuntos
Técnicas Biossensoriais , Elementos da Série dos Lantanídeos , Nanopartículas Metálicas , Pontos Quânticos , Transferência Ressonante de Energia de Fluorescência/métodos , Corantes Fluorescentes
7.
Anal Chem ; 94(46): 15964-15970, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36346959

RESUMO

Long-lived emissive nucleic acid probes are widely used in biochemical analysis due to their programmable structures, high signal-to-background ratio, and high sensitivity. Homogeneous detection based on long-lived emissive nucleic acid probes is often achieved through Förster resonance energy transfer (FRET), which suffers from the limitation of a narrow effective distance range. Herein, a new strategy of accessing nucleic acid hybridization-responsive luminescent probes is presented. The photoluminescence (PL) of a Lumi4-Tb complex internally modified with DNA is switched on by nucleic acid hybridization, after which the PL is increased up to 20 times. PL lifetime analysis revealed a possible mechanism of luminescence enhancement. Due to the flexibility of single-stranded nucleic acid chains, the bases and phosphate groups can coordinate with the Tb(III), which reduces the stability of the Tb complex and results in weak PL. After hybridization, the rigid double helix structure suppresses the coordination between Tb(III) and the bases or phosphate groups, causing luminescence enhancement. As the DNA sequence can be freely designed, an array of probes for different DNA or RNA targets can be created with the same Tb complex. Moreover, the novel probe design can afford pM detection limits of DNA or RNA without any nucleic acid amplification and exhibits great potential for nucleic acid detection in clinical diagnosis.


Assuntos
Luminescência , Ácidos Nucleicos , RNA , Hibridização de Ácido Nucleico/métodos , DNA/química , Sondas de Ácido Nucleico , Fosfatos
8.
Nat Methods ; 16(9): 815-829, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31471616

RESUMO

The applications of Förster resonance energy transfer (FRET) grow with each year. However, different FRET techniques are not applied consistently, nor are results uniformly presented, which makes implementing and reproducing FRET experiments challenging. We discuss important considerations for designing and evaluating ensemble FRET experiments. Alongside a primer on FRET basics, we provide guidelines for making experimental design choices such as the donor-acceptor pair, instrumentation and labeling chemistries; selecting control experiments to unambiguously demonstrate FRET and validate that the experiments provide meaningful data about the biomolecular process in question; analyzing raw data and assessing the results; and reporting data and experimental details in a manner that easily allows for reproducibility. Some considerations are also given for FRET assays and FRET imaging, especially with fluorescent proteins. Our goal is to motivate and empower all biologists to consider FRET for the powerful research tool it can be.


Assuntos
Pesquisa Biomédica , Transferência Ressonante de Energia de Fluorescência/métodos , Corantes Fluorescentes/química , Proteínas Luminescentes/metabolismo , Imagem Molecular/métodos , Animais , Humanos
9.
Inorg Chem ; 61(50): 20674-20689, 2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36475655

RESUMO

Lanthanide(III) (Ln3+) complexes feature desirable luminescence properties for cell microscopy imaging, but cytosolic delivery of Ln3+ complexes and their use for 2P imaging of live cells are challenging. In this article, we describe the synthesis and spectroscopic characterizations of a series of Ln3+ complexes based on two ligands, L1 and L2, featuring extended picolinate push-pull antennas for longer wavelength absorption and 2P absorption properties as well as a free carboxylate function for conjugation to peptides. Several cell penetrating peptide/Ln3+ complex conjugates were then prepared with the most interesting luminescent complexes, Tb(L1) and Eu(L2), and with two cell penetrating peptides (CPPs), ZF5.3 and TP2. A spectroscopic analysis demonstrates that the luminescence properties of the complexes are not affected by conjugation to the peptide. The conjugates were evaluated for one-photon (1P) time-gated microscopy imaging, which suppresses biological background fluorescence, and 2P confocal microscopy. Whereas TP2-based conjugates were unable to enter cells, successful 1P and 2P imaging was performed with ZF5.3[Tb(L1)]. 2P confocal imaging suggests proper internalization and cytosolic delivery as expected for this CPP. Noteworthy, 2P confocal microscopy also allowed characterization of the luminescence properties of the complex (spectrum, lifetime) within the cell, opening the way to functional luminescent probes for 2P confocal imaging of live cells.


Assuntos
Elementos da Série dos Lantanídeos , Elementos da Série dos Lantanídeos/química , Luminescência , Microscopia/métodos , Fótons , Ligantes , Peptídeos
10.
Nano Lett ; 21(11): 4802-4808, 2021 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-34041910

RESUMO

Isothermal nucleic acid amplification strategies have been combined with nanotechnology for advanced biosensing, material design, and biomedical applications. However, merging phenomena and materials of different nanoscales with the aim of exploiting all their benefits at once has remained a challenging endeavor. Here, we exemplify the various problems one can encounter when combining the nanodimensions of lanthanide complexes (∼2 nm), Förster resonance energy transfer (FRET, ∼5 nm), quantum dots (QDs, ∼20 nm), and rolling circle amplification (RCA, ∼250 nm) into a single microRNA biosensor and how these challenges can be overcome. Six different approaches, including simple FRET-RCA, enzyme-digesting FRET-RCA, and FRET-hyperbranched-RCA were investigated. We demonstrated specific miR-21 detection with 80 fM limit of detection and multiplexing capability with FRET from a Tb complex to different QDs. The detailed view on the various complex multi-nanodimensional assay systems elucidated the limited clinical translation of such sophisticated multicomponent nanobiosensors.


Assuntos
Técnicas Biossensoriais , MicroRNAs , Pontos Quânticos , DNA/genética , Transferência Ressonante de Energia de Fluorescência , MicroRNAs/genética
11.
Angew Chem Int Ed Engl ; 61(33): e202207797, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35759268

RESUMO

Biosensing approaches that combine small, engineered antibodies (nanobodies) with nanoparticles are often complicated. Here, we show that nanobodies with different C-terminal tags can be efficiently attached to a range of the most widely used biocompatible semiconductor quantum dots (QDs). Direct implementation into simplified assay formats was demonstrated by designing a rapid and wash-free mix-and-measure immunoassay for the epidermal growth factor receptor (EGFR). Terbium complex (Tb)-labeled hexahistidine-tagged nanobodies were specifically displaced from QD surfaces via EGFR-nanobody binding, leading to an EGFR concentration-dependent decrease of the Tb-to-QD Förster resonance energy transfer (FRET) signal. The detection limit of 80±20 pM (16±4 ng mL-1 ) was 3-fold lower than the clinical cut-off concentration for soluble EGFR and up to 10-fold lower compared to conventional sandwich FRET assays that required a pair of different nanobodies.


Assuntos
Pontos Quânticos , Anticorpos de Domínio Único , Receptores ErbB , Transferência Ressonante de Energia de Fluorescência , Térbio
12.
Angew Chem Int Ed Engl ; 61(4): e202113114, 2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-34748678

RESUMO

Upconversion materials have led to various breakthrough applications in solar energy conversion, imaging, and biomedicine. One key impediment is the facilitation of such processes at the molecular scale in solution where quenching effects are much more pronounced. In this work, molecular solution-state cooperative luminescence (CL) upconversion arising from a Yb excited state is explored and the mechanistic origin behind cooperative sensitisation (CS) upconversion in Yb/Tb systems is investigated. Counterintuitively, the best UC performances were obtained for Yb/Tb ratios close to parity, resulting in the brightest molecular upconversion complexes with a quantum yield of 2.8×10-6 at a low laser power density of 2.86 W cm-2 .

13.
Anal Chem ; 93(3): 1842-1850, 2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33356162

RESUMO

Fluorescence signal enhancement via isothermal nucleic acid amplification is an important approach for sensitive imaging of intra- or extracellular nucleic acid or protein biomarkers. Rolling circle amplification (RCA) is frequently applied for fluorescence in situ imaging but faces limitations concerning multiplexing, dynamic range, and the required multiple washing steps before imaging. Here, we show that Förster resonance energy transfer (FRET) between fluorescent dyes and between lanthanide (Ln) complexes and dyes that hybridize to ß-actin-specific RCA products in HaCaT cells can afford washing-free imaging of single ß-actin proteins. Proximity-dependent FRET could be monitored directly after or during (real-time monitoring) dye or Ln DNA probe incubation and could efficiently distinguish between photoluminescence from ß-actin-specific RCA and DNA probes freely diffusing in solution or nonspecifically attached to cells. Moreover, time-gated FRET imaging with the Ln-dye FRET pairs efficiently suppressed sample autofluorescence and improved the signal-to-background ratio. Our results present an important proof of concept of RCA-FRET imaging with a strong potential to advance in situ RCA toward easier sample preparation, higher-order multiplexing, autofluorescence-free detection, and increased dynamic range by real-time monitoring of in situ RCA.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Técnicas de Amplificação de Ácido Nucleico , Proteínas/análise , Linhagem Celular , Sondas de DNA/química , Corantes Fluorescentes/química , Humanos , Fatores de Tempo
14.
Chemistry ; 26(64): 14602-14611, 2020 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-32501573

RESUMO

Lanthanide-doped nanoparticles (LnNPs) have become an important class of fluorophores for advanced biosensing and bioimaging. LnNPs that are photosensitized by surface-attached antenna ligands can possess exceptional brightness. However, their functional bioconjugation remains an important challenge for their translation into bioanalytical applications. To solve this problem, we designed a ligand that can be simultaneously applied as efficient light harvesting antenna for Tb surface ions and strong linker of biomolecules to the LnNPs surfaces. To demonstrate generic applicability of the photosensitized TbNP-bioconjugates, we applied them in two prototypical applications for biosensing and bioimaging. First, in-solution biorecognition was shown by time-resolved Förster resonance energy transfer (FRET) between streptavidin-functionalized TbNPs to biotinylated dyes (ATTO 610). Second, in situ detection of ligand-receptor binding on cells was accomplished with TbNP-antibody (Matuzumab) conjugates that could specifically bind to transmembrane epidermal growth factor receptors (EGFR). High specificity and sensitivity were demonstrated by time-gated imaging of EGFR on both strongly (A431) and weakly (HeLa and Cos7) EGFR-expressing cell lines, whereas non-expressing cell lines (NIH3T3) and EGFR-passivated A431 cells did not show any signals. Despite the relatively large size of TbNP-antibody conjugates, they could be internalized by A431 cells upon binding to extracellular EGFR, which showed their potential as bright and stable luminescence markers for intracellular signaling.


Assuntos
Técnicas Biossensoriais , Nanopartículas , Animais , Família de Proteínas EGF , Receptores ErbB/metabolismo , Transferência Ressonante de Energia de Fluorescência , Camundongos , Células NIH 3T3 , Térbio
15.
Analyst ; 145(7): 2543-2553, 2020 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-32043497

RESUMO

The capability of upconverting nanoparticles (UCNPs) to convert near infrared (NIR) into visible light has become an important feature for biosensing, imaging, therapy, and their combination. While significant achievements have been accomplished during the last decade developing nanohybrids based on UCNPs as energy donors in Förster resonance energy transfer (FRET) systems, it is still challenging to understand and control FRET from UCNPs to dyes and to adapt the NIR excitation wavelength. Here, we describe the synthesis, characterization, and steady-state and time-resolved FRET analysis of UCNP-DNA nanohybrids, in which dye labelled single stranded (ss)DNA was attached to Yb-Er-co-doped core UCNPs (c-UCNPs) and c-UCNPs with a thin Nd-doped shell and a second thin undoped shell (css-UCNPs). Despite differences in sizes, compositions, donor-acceptor distances, brightness, and excitation wavelength (980 nm for Yb3+ and 808 nm for Nd3+), all UCNP-DNA nanohybrids showed very similar concentration dependent FRET-quenching of UCNP luminescence with efficiencies between 0 and ∼20%. We analyzed luminescence intensities, decay times, and rise times and could show the entanglement of excitation and emission kinetics by simply changing the excitation wavelength from 980 nm to 808 nm for the same css-UCNPs. Time-gated FRET-sensitized dye luminescence showed dye-ssDNA concentration dependence over four orders of magnitude (1 nM to 10 µM), which suggested a possible application to nucleic acid biosensing for both 808 and 980 nm excitation.


Assuntos
DNA de Cadeia Simples/química , Európio/química , Transferência Ressonante de Energia de Fluorescência , Corantes Fluorescentes/química , Raios Infravermelhos , Nanopartículas Metálicas/química , Carbocianinas/química , Íons/química , Neodímio/química , Ítrio/química
16.
Anal Bioanal Chem ; 412(1): 73-80, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31776644

RESUMO

Although water has been extensively studied, not all of its unique properties have been fully understood. There is still controversy about the temperature at which hydrogen bonds are broken or weakened, producing the anomalous temperature dependence of many water properties. Different temperatures between 23 and 48 °C have been reported, but no study has scrutinized the reasons for this discrepancy. We suggest the determining role of pH in the alteration of the water anomaly temperature. We employed a luminescent europium trisbipyridine cryptate, which is highly sensitive to changes in the arrangement of water molecules and whose luminescence intensity and lifetime are not significantly influenced by variations over a broad pH range. Our results revealed an increase of the crossover temperature from circa 35 °C at pH 3.5 to circa 45 °C at pH 7 to 9, which explains the discrepancies of previous studies. The pH dependence of water anomaly temperature is an important property for a better understanding of water and water-based systems and applications.

17.
Molecules ; 25(16)2020 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-32806745

RESUMO

Time-gated Förster resonance energy transfer (TG-FRET) between Tb complexes and luminescent semiconductor quantum dots (QDs) provides highly advantageous photophysical properties for multiplexed biosensing. Multiplexed Tb-to-QD FRET immunoassays possess a large potential for in vitro diagnostics, but their performance is often insufficient for their application under clinical conditions. Here, we developed a homogeneous TG-FRET immunoassay for the quantification of carcinoembryonic antigen (CEA), neuron-specific enolase (NSE), and prostate-specific antigen (PSA) from a single serum sample by multiplexed Tb-to-QD FRET. Tb-IgG antibody donor conjugates were combined with compact QD-F(ab')2 antibody acceptor conjugates with three different QDs emitting at 605, 650, and 705 nm. Upon antibody-antigen-antibody sandwich complex formation, the QD acceptors were sensitized via FRET from Tb, and the FRET ratios of QD and Tb TG luminescence intensities increased specifically with increasing antigen concentrations. Although limits of detection (LoDs: 3.6 ng/mL CEA, 3.5 ng/mL NSE, and 0.3 ng/mL PSA) for the triplexed assay were slightly higher compared to the single-antigen assays, they were still in a clinically relevant concentration range and could be quantified in 50 µL serum samples on a B·R·A·H·M·S KRYPTOR Compact PLUS clinical immunoassay plate reader. The simultaneous quantification of CEA, NSE, and PSA at different concentrations from the same serum sample demonstrated actual multiplexing Tb-to-QD FRET immunoassays and the potential of this technology for translation into clinical diagnostics.


Assuntos
Antígeno Carcinoembrionário/análise , Transferência Ressonante de Energia de Fluorescência , Imunoglobulina G/química , Calicreínas/análise , Antígeno Prostático Específico/análise , Pontos Quânticos/química , Térbio/química , Proteínas Ligadas por GPI/análise , Humanos , Imunoensaio
18.
J Am Chem Soc ; 141(28): 11123-11141, 2019 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-31251609

RESUMO

Semiconductor quantum dots (QDs) are the most versatile fluorophores for Förster resonance energy transfer (FRET) because they can function as both donors and acceptors for a multitude of fluorophores. However, a complete understanding of multidonor-multiacceptor FRET networks on QDs and their full employment into advanced fluorescence sensing and imaging have not been accomplished. Here, we provide a holistic photophysical analysis of such multidonor-QD-multiacceptor FRET systems using time-resolved and steady-state photoluminescence (PL) spectroscopy and Monte Carlo simulations. Multiple terbium complex (Tb) donors (1-191 units) and Cy5.5 dye acceptors (1-60 units) were attached to a central QD, and the entire range of combinations of FRET pathways was investigated by Tb, QD, and Cy5.5 PL. Experimental and simulation results were in excellent agreement and could disentangle the distinct contributions of hetero-FRET, homo-FRET, and dye dimerization. The FRET efficiency was independent of the number of Tb donors and dependent on the number of Cy5.5 acceptors, which could be used to independently adapt the PL intensity by the number of Tb donors and the PL lifetime by the number of Cy5.5 acceptors. We used this unique tuning capability to prepare Tb-QD-Cy5.5 conjugates with distinct QD PL lifetimes but similar QD PL intensities. These brightness-equalized multihybrid FRET nanoparticles were applied to optical barcoding via three time-gated PL intensity detection windows, which resulted in simple RGB ratios. Direct applicability was demonstrated by an efficient RGB distinction of different nanoparticle-encoded microbeads within the same field of view with both single-wavelength excitation and detection on a standard fluorescence microscope.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Corantes Fluorescentes/química , Nanopartículas/química , Carbocianinas/química , Pontos Quânticos/química , Térbio/química
19.
Anal Chem ; 91(4): 3101-3109, 2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30657312

RESUMO

The hybridization chain reaction (HCR) is a simple and sensitive method for quantifying nucleic acids. Current approaches cannot combine a washing-free sensing format with multiplexed target quantification at low concentrations, which would be highly desirable for detection both in solution and in situ. Here, we demonstrate the implementation of time-gated Förster resonance energy transfer (TG-FRET) between terbium donors and dye acceptors into HCR for multiplexed quantification of microRNAs (miR-20a and miR-21) and their DNA analogues. HCR-TG-FRET provided washing-free nucleic acid quantification with very low limits of detection down to 240 amol (1.7 pM) of microRNA and 123 amol (0.88 pM) of DNA. Efficient distinction from very homologous microRNAs demonstrated high target specificity. Multiplexing with a single measurement, a single excitation wavelength, and a single FRET pair allowed for a simultaneous quantification of miR-20a and miR-21 at concentrations between 30 and 300 pM from the same sample. HCR-TG-FRET showed similar performance for serum-free and serum-containing samples without the use of RNase inhibitors. Our results present a significant improvement in current HCR approaches regarding simplicity, sensitivity, and multiplexing. The versatile diagnostic performance of HCR-TG-FRET even in challenging biological environments presents an important advantage for advanced nucleic acid biosensing.


Assuntos
Transferência Ressonante de Energia de Fluorescência , MicroRNAs/análise , Hibridização de Ácido Nucleico , Fatores de Tempo
20.
Anal Chem ; 91(22): 14561-14568, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31638767

RESUMO

The quantification of cellular deoxyribonucleoside triphosphate (dNTP) levels is important for studying pathologies, genome integrity, DNA repair, and the efficacy of pharmacological drug treatments. Current standard methods, such as enzymatic assays or high-performance liquid chromatography, are complicated, costly, and labor-intensive, and alternative techniques that simplify dNTP quantification would present very useful complementary approaches. Here, we present a dNTP assay based on isothermal rolling circle amplification (RCA) and rapid time-gated Förster resonance energy transfer (TG-FRET), which used a commercial clinical plate reader system. Despite the relatively simple assay format, limits of detection down to a few picomoles of and excellent specificity for each dNTP against the other dNTPs, rNTPs, and dUTP evidenced the strong performance of the assay. Direct applicability of RCA-FRET to applied nucleic acid research was demonstrated by quantifying all dNTPs in CEM-SS leukemia cells with and without hydroxyurea or auranofin treatment. Both pharmacological agents could reduce the dNTP production in a time- and dose-dependent manner. RCA-FRET provides simple, rapid, sensitive, and specific quantification of intracellular dNTPs and has the potential to become an advanced tool for both fundamental and applied dNTP research.


Assuntos
Desoxirribonucleotídeos/análise , Transferência Ressonante de Energia de Fluorescência/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , Auranofina/farmacologia , Sequência de Bases , Linhagem Celular Tumoral , Inibidores Enzimáticos/farmacologia , Humanos , Hidroxiureia/farmacologia , Limite de Detecção , Estudo de Prova de Conceito , Ribonucleotídeo Redutases/antagonistas & inibidores , Sensibilidade e Especificidade , Tiorredoxina Dissulfeto Redutase/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA