Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Clin Infect Dis ; 71(2): 403-411, 2020 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-31562530

RESUMO

BACKGROUND: Bordetella pertussis is among the leading causes of vaccine-preventable deaths and morbidity globally. Human asymptomatic carriage as a reservoir for community transmission of infections might be a target of future vaccine strategies, but has not been demonstrated. Our objective was to demonstrate that asymptomatic nasopharyngeal carriage of Bordetella pertussis is inducible in humans and to define the microbiological and immunological features of presymptomatic infection. METHODS: Healthy subjects aged 18-45 years with an antipertussis toxin immunoglobin G (IgG) concentration of <20 international units/ml were inoculated intranasally with nonattenuated, wild-type Bordetella pertussis strain B1917. Safety, colonization, and shedding were monitored over 17 days in an inpatient facility. Colonization was assessed by culture and quantitative polymerase chain reaction. Azithromycin was administered from Day 14. The inoculum dose was escalated, aiming to colonize at least 70% of participants. Immunological responses were measured. RESULTS: There were 34 participants challenged, in groups of 4 or 5. The dose was gradually escalated from 103 colony-forming units (0% colonized) to 105 colony-forming units (80% colonized). Minor symptoms were reported in a minority of participants. Azithromycin eradicated colonization in 48 hours in 88% of colonized individuals. Antipertussis toxin IgG seroconversion occurred in 9 out of 19 colonized participants and in none of the participants who were not colonized. Nasal wash was a more sensitive method to detect colonization than pernasal swabs. No shedding of Bordetella pertussis was detected in systematically collected environmental samples. CONCLUSIONS: Bordetella pertussis colonization can be deliberately induced and leads to a systemic immune response without causing pertussis symptoms. CLINICAL TRIALS REGISTRATION: NCT03751514.


Assuntos
Bordetella pertussis , Coqueluche , Adolescente , Adulto , Azitromicina/uso terapêutico , Humanos , Pessoa de Meia-Idade , Nasofaringe , Vacina contra Coqueluche , Coqueluche/prevenção & controle , Adulto Jovem
2.
J Clin Invest ; 133(5)2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36649086

RESUMO

BACKGROUNDTo date, only limited data are available on the mechanisms of protection against colonization with Bordetella pertussis in humans.METHODSIn this study, the cellular responses to B. pertussis challenge were monitored longitudinally using high-dimensional EuroFlow-based flow cytometry, allowing quantitative detection of more than 250 different immune cell subsets in the blood of 15 healthy donors.RESULTSParticipants who were protected against colonization showed different early cellular responses compared with colonized participants. Especially prominent for colonization-protected participants were the early expansion of CD36- nonclassical monocytes on day 1 (D1), natural killer cells (D3), follicular T helper cells (D1-D3), and plasma cells (D3). Plasma cell expansion on D3 correlated negatively with the CFU load on D7 and D9 after challenge. Increased plasma cell maturation on D11-D14 was found in participants with seroconversion.CONCLUSIONThese early cellular immune responses following experimental infection can now be further characterized and potentially linked to an efficient mucosal immune response, preventing colonization. Ultimately, their presence may be used to evaluate whether new B. pertussis vaccine candidates are protective against B. pertussis colonization, e.g., by bacterial challenge after vaccination.TRIAL REGISTRATIONClinicalTrials.gov NCT03751514.FUNDINGInnovative Medicines Initiative 2 Joint Undertaking and the EuroFlow Consortium.


Assuntos
Bordetella pertussis , Coqueluche , Humanos , Cinética , Vacina contra Coqueluche , Vacinação , Coqueluche/prevenção & controle , Coqueluche/microbiologia
3.
Lancet Microbe ; 3(12): e931-e943, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36462524

RESUMO

BACKGROUND: Pharyngeal colonisation by the commensal bacterium Neisseria lactamica inhibits colonisation by Neisseria meningitidis and has an inverse epidemiological association with meningococcal disease. The mechanisms that underpin this relationship are unclear, but could involve the induction of cross-reactive immunity. In this study, we aimed to evaluate whether colonisation with N lactamica induces N lactamica-specific B-cell responses that are cross-reactive with N meningitidis. METHODS: In this randomised, placebo-controlled, human infection trial at University Hospital Southampton Clinical Research Facility (Southampton, UK), healthy adults aged 18-45 years were randomly assigned (2:1) to receive intranasal inoculation with either 105 colony-forming units of N lactamica in 1 mL phosphate-buffered saline (PBS) or 1 mL PBS alone. Participants and researchers conducting participant sampling and immunological assays were masked to allocation. The primary endpoint was the frequency of circulating N lactamica-specific plasma cells and memory B cells after N lactamica inoculation (day 7-28) compared with baseline values (day 0), measured using enzyme-linked immunospot assays. The secondary endpoint was to measure the frequency of N meningitidis-specific B cells. In a second study, we measured the effect of duration of N lactamica colonisation on seroconversion by terminating carriage at either 4 days or 14 days with single-dose oral ciprofloxacin. The studies are now closed to participants. The trials are registered with ClinicalTrials.gov, NCT03633474 and NCT03549325. FINDINGS: Of 50 participants assessed for eligibility between Sept 5, 2018, and March 3, 2019, 31 were randomly assigned (n=20 N lactamica, n=11 PBS). Among the 17 participants who were colonised with N lactamica, the median baselines compared with peak post-colonisation N lactamica-specific plasma-cell frequencies (per 105 peripheral blood mononuclear cells) were 0·0 (IQR 0·0-0·0) versus 5·0 (1·5-10·5) for IgA-secreting plasma cells (p<0·0001), and 0·0 (0·0-0·0) versus 3·0 (1·5-9·5) for IgG-secreting plasma cells (p<0·0001). Median N lactamica-specific IgG memory-B-cell frequencies (percentage of total IgG memory B cells) increased from 0·0024% (0·0000-0·0097) at baseline to 0·0384% (0·0275-0·0649) at day 28 (p<0·0001). The frequency of N meningitidis-specific IgA-secreting and IgG-secreting plasma cells and memory B cells also increased signficantly in participants who were colonised with N lactamica. Upper respiratory tract symptoms were reported in ten (50%) of 20 participants who were inoculated with N lactamica and six (55%) of 11 participants who were inoculated with PBS (p>0·99). Three additional adverse events (two in the N lactamica group and one in the PBS group) and no serious adverse events were reported. In the second study, anti-N lactamica and anti-N meningitidis serum IgG titres increased only in participants who were colonised with N lactamica for 14 days. INTERPRETATION: Natural immunity to N meningitidis after colonisation with N lactamica might be due to cross-reactive adaptive responses. Exploitation of this microbial mechanism with a genetically modified live vector could protect against N meningitidis colonisation and disease. FUNDING: Wellcome Trust, Medical Research Council, and NIHR Southampton Biomedical Research Centre.


Assuntos
Neisseria lactamica , Neisseria meningitidis , Adulto , Humanos , Leucócitos Mononucleares , Imunoglobulina A Secretora , Fosfatos , Solução Salina , Imunoglobulina G
4.
Sci Transl Med ; 13(601)2021 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-34233953

RESUMO

The human nasopharynx contains a stable microbial ecosystem of commensal and potentially pathogenic bacteria, which can elicit protective primary and secondary immune responses. Experimental intranasal infection of human adults with the commensal Neisseria lactamica produced safe, sustained pharyngeal colonization. This has potential utility as a vehicle for sustained release of antigen to the human mucosa, but commensals in general are thought to be immunologically tolerated. Here, we show that engineered N. lactamica, chromosomally transformed to express a heterologous vaccine antigen, safely induces systemic, antigen-specific immune responses during carriage in humans. When the N. lactamica expressing the meningococcal antigen Neisseria Adhesin A (NadA) was inoculated intranasally into human volunteers, all colonized participants carried the bacteria asymptomatically for at least 28 days, with most (86%) still carrying the bacteria at 90 days. Compared to an otherwise isogenic but phenotypically wild-type strain, colonization with NadA-expressing N. lactamica generated NadA-specific immunoglobulin G (IgG)- and IgA-secreting plasma cells within 14 days of colonization and NadA-specific IgG memory B cells within 28 days of colonization. NadA-specific IgG memory B cells were detected in peripheral blood of colonized participants for at least 90 days. Over the same period, there was seroconversion against NadA and generation of serum bactericidal antibody activity against a NadA-expressing meningococcus. The controlled infection was safe, and there was no transmission to adult bedroom sharers during the 90-day period. Genetically modified N. lactamica could therefore be used to generate beneficial immune responses to heterologous antigens during sustained pharyngeal carriage.


Assuntos
Vacinas Meningocócicas , Neisseria lactamica , Adulto , Anticorpos Antibacterianos , Antígenos Heterófilos , Ecossistema , Humanos , Memória Imunológica
5.
Sci Rep ; 9(1): 9789, 2019 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-31278312

RESUMO

Engineering tissue structures that mimic those found in vivo remains a challenge for modern biology. We demonstrate a new technique for engineering composite structures of cells comprising layers of heterogeneous cell types. An acoustofluidic bioreactor is used to assemble epithelial cells into a sheet-like structure. On transferring these cell sheets to a confluent layer of fibroblasts, the epithelial cells cover the fibroblast surface by collective migration maintaining distinct epithelial and fibroblast cell layers. The collective behaviour of the epithelium is dependent on the formation of cell-cell junctions during levitation and contrasts with the behaviour of mono-dispersed epithelial cells where cell-matrix interactions dominate and hinder formation of discrete cell layers. The multilayered tissue model is shown to form a polarised epithelial barrier and respond to apical challenge. The method is useful for engineering a wide range of layered tissue types and mechanistic studies on collective cell migration.


Assuntos
Engenharia Tecidual , Acústica , Animais , Biomarcadores , Reatores Biológicos , Adesão Celular , Impedância Elétrica , Células Epiteliais , Fibroblastos , Humanos
6.
Tissue Barriers ; 4(3): e1206378, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27583193

RESUMO

The bronchial epithelium and underlying fibroblasts form an epithelial mesenchymal trophic unit (EMTU) which controls the airway microenvironment. We hypothesized that cell-cell communication within the EMTU propagates and amplifies the innate immune response to respiratory viral infections. EMTU co-culture models incorporating polarized (16HBE14o-) or differentiated primary human bronchial epithelial cells (HBECs) and fibroblasts were challenged with double-stranded RNA (dsRNA) or rhinovirus. In the polarized EMTU model, dsRNA affected ionic but not macromolecular permeability or cell viability. Compared with epithelial monocultures, dsRNA-stimulated pro-inflammatory mediator release was synergistically enhanced in the basolateral compartment of the EMTU model, with the exception of IL-1α which was unaffected by the presence of fibroblasts. Blockade of IL-1 signaling with IL-1 receptor antagonist (IL-1Ra) completely abrogated dsRNA-induced basolateral release of mediators except CXCL10. Fibroblasts were the main responders to epithelial-derived IL-1 since exogenous IL-1α induced pro-inflammatory mediator release from fibroblast but not epithelial monocultures. Our findings were confirmed in a differentiated EMTU model where rhinovirus infection of primary HBECs and fibroblasts resulted in synergistic induction of basolateral IL-6 that was significantly abrogated by IL-1Ra. This study provides the first direct evidence of integrated IL-1 signaling within the EMTU to propagate inflammatory responses to viral infection.


Assuntos
Comunicação Celular , Microambiente Celular , Células Epiteliais/metabolismo , Fibroblastos/metabolismo , Interleucina-1alfa/metabolismo , Mucosa Respiratória/metabolismo , Permeabilidade Capilar , Linhagem Celular , Células Cultivadas , Quimiocina CXCL10/metabolismo , Células Epiteliais/virologia , Fibroblastos/virologia , Humanos , Mucosa Respiratória/citologia , Mucosa Respiratória/virologia , Rhinovirus/patogenicidade , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA