RESUMO
BACKGROUND: The endocannabinoid (eCB) system and the serotonin (5-HT) are both implicated in the severity of the depression. 5-HT is synthesized from the amino acid tryptophan (Trp), which is also a precursor for kynurenine (Kyn) whose production is increased at the expense of 5-HT in depressed patients. No clinical studies have investigated the crosstalk between the eCB system and the Trp/5-HT/Kyn pathways. Here, we hypothesized that the eCB system is associated with an enhanced Kyn production in relation to the severity of depressive symptoms. METHODS: Eighty-two subjects (51 patients with a diagnosis of depressive disorder (DSM-5) and 31 healthy volunteers), were assessed with the Montgomery-Åsberg Depression Rating Scale (MADRS), Beck Depression Scale, and Global Clinical Impression. Serum concentrations of eCBs (N-arachidonoylethanolamine (AEA) and 2-arachidonoylglycerol (2-AG)); structurally related fatty acyl compounds 2-oleoylglycerol (2-OG), oleoylethanolamide (OEA), and palmitoylethanolamide (PEA); Trp, Kyn, Kyn/Trp ratio (an index of Trp degradation into Kyn) and 5-HT were also determined. RESULTS: Following a principal component analysis including the severity of depression, Kyn and the Kyn/Trp ratio appear to be directly associated with 2-AG, AEA, and PEA. Interestingly, these biomarkers also permitted to distinguish the population into two main clusters: one of individuals having mild/severe depressive symptoms and the other with an absence of depressive symptoms. Using parametric analysis, higher serum levels of 2-AG, Kyn, and the ratio Kyn/Trp and lower levels of Trp and 5-HT were found in individuals with mild/severe depressive symptoms than in those without depressive symptoms. While in asymptomatic people, PEA was directly associated to Trp, and OEA indirectly linked to 5-HT, in individuals with depressive symptoms, these correlations were lost, and instead, positive correlations between AEA and 2-AG, PEA and AEA, and PEA vs 2-AG and OEA concentrations were found. CONCLUSIONS: Parametric and non-parametric analyses suggest a possible association between eCBs, tryptophan/kynurenine biomarkers, and severity of depression, confirming a likely interplay among inflammation, stress, and depression. The enhanced relationships among the biomarkers of the 2-AG and AEA pathways and related lipids seen in individuals with depressive symptoms, but not in asymptomatics, suggest an altered metabolism of the eCB system in depression.
Assuntos
Amidas , Etanolaminas , Cinurenina , Ácidos Palmíticos , Triptofano , Humanos , Triptofano/metabolismo , Cinurenina/metabolismo , Depressão/diagnóstico , Endocanabinoides , Serotonina , BiomarcadoresRESUMO
It is hard to overestimate the influence of the endocannabinoid signaling (ECS) system on central nervous system (CNS) function. In the 40 years since cannabinoids were found to trigger specific cell signaling cascades, studies of the ECS system continue to cause amazement, surprise, and confusion! CB1 cannabinoid receptors are expressed widely in the CNS and regulate cell-cell communication via effects on the release of both neurotransmitters and gliotransmitters. CB2 cannabinoid receptors are difficult to detect in the CNS but seem to "punch above their weight" as compounds targeting these receptors have significant effects on inflammatory state and behavior. Positive and negative allosteric modulators for both receptors have been identified and examined in preclinical studies. Concentrations of the endocannabinoid ligands, N-arachidonoylethanolamine and 2-arachidonoylglycerol (2-AG), are regulated by a combination of enzymatic synthesis and degradation and inhibitors of these processes are available and making their way into clinical trials. Importantly, ECS regulates many essential brain functions, including regulation of reward, anxiety, inflammation, motor control, and cellular development. While the field is on the cusp of preclinical discoveries providing impactful clinical and therapeutic insights into many CNS disorders, there is still much to be learned about this remarkable and versatile modulatory system.
Assuntos
Canabinoides , Endocanabinoides , Endocanabinoides/metabolismo , Receptores de Canabinoides/metabolismo , Transdução de Sinais , Sistema Nervoso Central/metabolismo , Receptor CB1 de CanabinoideRESUMO
The alteration of the endocannabinoid tone usually associates with changes in the expression and/or function of the cannabinoid CB1 receptor. In Alzheimer's disease (AD), amyloid beta (Aß)-containing aggregates induce a chronic inflammatory response leading to reactivity of both microglia and astrocytes. However, how this glial response impacts on the glial CB1 receptor expression in the subiculum of a mouse model of AD, a brain region particularly affected by large accumulation of plaques and concomitant subcellular changes in microglia and astrocytes, is unknown. The CB1 receptor localization in both glial cells was investigated in the subiculum of male 5xFAD/CB2 EGFP/f/f (AD model) and CB2 EGFP/f/f mice by immuno-electron microscopy. The findings revealed that glial CB1 receptors suffer remarkable changes in the AD mouse. Thus, CB1 receptor expression increases in reactive microglia in 5xFAD/CB2 EGFP/f/f , but remains constant in astrocytes with CB1 receptor labeling rising proportionally to the perimeter of the reactive astrocytes. Not least, the CB1 receptor localization in microglial processes in the subiculum of controls and closely surrounding amyloid plaques and dystrophic neurites of the AD model, supports previous suggestions of the presence of the CB1 receptor in microglia. These findings on the correlation between glial reactivity and the CB1 receptor expression in microglial cells and astrocytes, contribute to the understanding of the role of the endocannabinoid system in the pathophysiology of Alzheimer's disease.
Assuntos
Doença de Alzheimer , Canabinoides , Masculino , Camundongos , Animais , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Endocanabinoides/metabolismo , Receptores de Canabinoides/metabolismo , Neuroglia/metabolismo , Microglia/metabolismo , Hipocampo/metabolismo , Placa Amiloide/metabolismo , Modelos Animais de Doenças , Camundongos TransgênicosRESUMO
Graft-versus-host disease (GVHD) pathophysiology is a complex interplay between cells that comprise the adaptive and innate arms of the immune system. Effective prophylactic strategies are therefore contingent upon approaches that address contributions from both immune cell compartments. In the current study, we examined the role of the type 2 cannabinoid receptor (CB2R), which is expressed on nearly all immune cells, and demonstrated that absence of the CB2R on donor CD4+ or CD8+ T cells or administration of a selective CB2R pharmacological antagonist exacerbated acute GVHD lethality. This was accompanied primarily by the expansion of proinflammatory CD8+ T cells, indicating that constitutive CB2R expression on T cells preferentially regulated CD8+ T-cell alloreactivity. Using a novel CB2ReGFP reporter mouse, we observed significant loss of CB2R expression on T cells, but not macrophages, during acute GVHD, indicative of differential alterations in receptor expression under inflammatory conditions. Therapeutic targeting of the CB2R with the agonists Δ9-tetrahydrocannabinol (THC) and JWH-133 revealed that only THC mitigated lethal T cell-mediated acute GVHD. Conversely, only JWH-133 was effective in a sclerodermatous chronic GVHD model where macrophages contributed to disease biology. In vitro, both THC and JWH-133 induced arrestin recruitment and extracellular regulated kinase phosphorylation via CB2R, but THC had no effect on CB2R-mediated inhibition of adenylyl cyclase. This study shows that the CB2R plays a critical role in the regulation of GVHD and suggests that effective therapeutic targeting is dependent upon agonist signaling characteristics and receptor selectivity in conjunction with the composition of pathogenic immune effector cells.
Assuntos
Doença Enxerto-Hospedeiro/imunologia , Receptor CB2 de Canabinoide/imunologia , Transdução de Sinais , Doença Aguda , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/patologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/patologia , Doença Crônica , Doença Enxerto-Hospedeiro/patologia , Camundongos Endogâmicos C57BL , Índice de Gravidade de DoençaRESUMO
Cannabis is well established to impact affective states, emotion and perceptual processing, primarily through its interactions with the endocannabinoid system. While cannabis use is quite prevalent in many individuals afflicted with psychiatric illnesses, there is considerable controversy as to whether cannabis may worsen these conditions or provide some form of therapeutic benefit. The development of pharmacological agents which interact with components of the endocannabinoid system in more localized and discrete ways then via phytocannabinoids found in cannabis, has allowed the investigation if direct targeting of the endocannabinoid system itself may represent a novel approach to treat psychiatric illness without the potential untoward side effects associated with cannabis. Herein we review the current body of literature regarding the various pharmacological tools that have been developed to target the endocannabinoid system, their impact in preclinical models of psychiatric illness and the recent data emerging of their utilization in clinical trials for psychiatric illnesses, with a specific focus on substance use disorders, trauma-related disorders, and autism. We highlight several candidate drugs which target endocannabinoid function, particularly inhibitors of endocannabinoid metabolism or modulators of cannabinoid receptor signaling, which have emerged as potential candidates for the treatment of psychiatric conditions, particularly substance use disorder, anxiety and trauma-related disorders and autism spectrum disorders. Although there needs to be ongoing clinical work to establish the potential utility of endocannabinoid-based drugs for the treatment of psychiatric illnesses, the current data available is quite promising and shows indications of several potential candidate diseases which may benefit from this approach.
Assuntos
Cannabis , Alucinógenos , Transtornos Mentais , Humanos , Endocanabinoides , Transtornos Mentais/tratamento farmacológico , Ansiedade , Transtornos de Ansiedade , Agonistas de Receptores de CanabinoidesRESUMO
Even a brief exposure to severe stress strengthens synaptic connectivity days later in the amygdala, a brain area implicated in the affective symptoms of stress-related psychiatric disorders. However, little is known about the synaptic signaling mechanisms during stress that eventually culminate in its delayed impact on the amygdala. Hence, we investigated early stress-induced changes in amygdalar synaptic signaling in order to prevent its delayed effects. Whole-cell recordings in basolateral amygdala (BLA) slices from rats revealed higher frequency of miniature excitatory postsynaptic currents (mEPSCs) immediately after 2-h immobilization stress. This was replicated by inhibition of cannabinoid receptors (CB1R), suggesting a role for endocannabinoid (eCB) signaling. Stress also reduced N-arachidonoylethanolamine (AEA), an endogenous ligand of CB1R. Since stress-induced activation of fatty acid amide hydrolase (FAAH) reduces AEA, we confirmed that oral administration of an FAAH inhibitor during stress prevents the increase in synaptic excitation in the BLA soon after stress. Although stress also caused an immediate reduction in synaptic inhibition, this was not prevented by FAAH inhibition. Strikingly, FAAH inhibition during the traumatic stressor was also effective 10 d later on the delayed manifestation of synaptic strengthening in BLA neurons, preventing both enhanced mEPSC frequency and increased dendritic spine-density. Thus, oral administration of an FAAH inhibitor during a brief stress prevents the early synaptic changes that eventually build up to hyperexcitability in the amygdala. This framework is of therapeutic relevance because of growing interest in targeting eCB signaling to prevent the gradual development of emotional symptoms and underlying amygdalar dysfunction triggered by traumatic stress.
Assuntos
Complexo Nuclear Basolateral da Amígdala/fisiologia , Emoções/efeitos dos fármacos , Endocanabinoides/metabolismo , Transdução de Sinais/fisiologia , Estresse Psicológico/fisiopatologia , Administração Oral , Amidoidrolases/antagonistas & inibidores , Amidoidrolases/metabolismo , Animais , Ácidos Araquidônicos , Antagonistas de Receptores de Canabinoides/administração & dosagem , Modelos Animais de Doenças , Emoções/fisiologia , Inibidores Enzimáticos/administração & dosagem , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Humanos , Masculino , Alcamidas Poli-Insaturadas , Ratos , Receptor CB1 de Canabinoide/antagonistas & inibidores , Receptor CB1 de Canabinoide/metabolismo , Transdução de Sinais/efeitos dos fármacos , Estresse Psicológico/tratamento farmacológico , Estresse Psicológico/psicologiaRESUMO
Many patients with chronic pain conditions suffer from depression. The mechanisms underlying pain-induced depression are still unclear. There are critical links of medial prefrontal cortex (mPFC) synaptic function to depression, with signaling through the endocannabinoid (eCB) system as an important contributor. We hypothesized that afferent noxious inputs after injury compromise activity-dependent eCB signaling in the mPFC, resulting in depression. Depression-like behaviors were tested in male and female rats with traumatic neuropathy [spared nerve injury (SNI)], and neuronal activity in the mPFC was monitored using the immediate early gene c-fos and in vivo electrophysiological recordings. mPFC eCB Concentrations were determined using mass spectrometry, and behavioral and electrophysiological experiments were used to evaluate the role of alterations in eCB signaling in depression after pain. SNI-induced pain induced the development of depression phenotypes in both male and female rats. Pyramidal neurons in mPFC showed increased excitability followed by reduced excitability in the onset and prolonged phases of pain, respectively. Concentrations of the eCBs, 2-arachidonoylglycerol (2-AG) in the mPFC, were elevated initially after SNI, and our results indicate that this resulted in a loss of CB1R function on GABAergic interneurons in the mPFC. These data suggest that excessive release of 2-AG as a result of noxious stimuli triggers use-dependent loss of function of eCB signaling leading to excessive GABA release in the mPFC, with the final result being behavioral depression.SIGNIFICANCE STATEMENT Pain has both somatosensory and affective components, so the complexity of mechanisms underlying chronic pain is best represented by a biopsychosocial model that includes widespread CNS dysfunction. Many patients with chronic pain conditions develop depression. The mechanism by which pain causes depression is unclear. Although manipulation of the eCB signaling system as an avenue for providing analgesia per se has not shown much promise in previous studies. An important limitation of past research has been inadequate consideration of the dynamic nature of the connection between pain and depression as they develop. Here, we show that activity-dependent synthesis of eCBs during the initial onset of persistent pain is the critical link leading to depression when pain is persistent.
Assuntos
Dor Crônica/fisiopatologia , Depressão/etiologia , Endocanabinoides/fisiologia , Neuralgia/fisiopatologia , Córtex Pré-Frontal/fisiopatologia , Animais , Mapeamento Encefálico , Dor Crônica/complicações , Dor Crônica/tratamento farmacológico , Dor Crônica/psicologia , Depressão/fisiopatologia , Comportamento Alimentar , Feminino , Neurônios GABAérgicos/química , Gabapentina/uso terapêutico , Genes fos , Hiperalgesia/fisiopatologia , Hiperalgesia/psicologia , Interneurônios/química , Imageamento por Ressonância Magnética , Masculino , Neuralgia/complicações , Neuralgia/tratamento farmacológico , Neuralgia/psicologia , Nociceptividade/fisiologia , Teste de Campo Aberto , Córtex Pré-Frontal/metabolismo , Ratos , Ratos Sprague-Dawley , Receptor CB1 de Canabinoide/análise , Neuropatia Ciática/fisiopatologia , Neuropatia Ciática/psicologia , Organismos Livres de Patógenos Específicos , NataçãoRESUMO
The complexity of neuropathic pain and its associated comorbidities, including dysautonomia, make it difficult to treat. Overlap of anatomical regions and pharmacology of sympathosensory systems in the central nervous system (CNS) provide targets for novel treatment strategies. The dorsal periaqueductal gray (dPAG) is an integral component of both the descending pain modulation system and the acute stress response and is critically involved in both analgesia and the regulation of sympathetic activity. Local manipulation of the endocannabinoid signaling system holds great promise to provide analgesia without excessive adverse effects and also influence autonomic output. Inhibition of fatty acid amide hydrolase (FAAH) increases brain concentrations of the endocannabinoid N-arachidonoylethanolamine (AEA) and reduces pain-related behaviors in neuropathic pain models. Neuropathic hyperalgesia and reduced sympathetic tone are associated with increased FAAH activity in the dPAG, which suggests the hypothesis that inhibition of FAAH in the dPAG will normalize pain sensation and autonomic function in neuropathic pain. To test this hypothesis, the effects of systemic or intra-dPAG FAAH inhibition on hyperalgesia and dysautonomia developed after spared nerve injury (SNI) were assessed in male and female rats. Administration of the FAAH inhibitor PF-3845 into the dPAG reduces hyperalgesia behavior and the decrease in sympathetic tone induced by SNI. Prior administration of the CB1 receptor antagonist AM281, attenuated the antihyperalgesic and sympathetic effects of FAAH inhibition. No sex differences were identified. These data support an integrative role for AEA/CB1 receptor signaling in the dPAG contributing to the regulation of both hyperalgesia behavior and altered sympathetic tone in neuropathic pain.
Assuntos
Neuralgia , Disautonomias Primárias , Feminino , Masculino , Animais , Ratos , Endocanabinoides/farmacologia , Hiperalgesia/tratamento farmacológico , Substância Cinzenta Periaquedutal/metabolismo , Receptor CB1 de Canabinoide , Amidoidrolases/metabolismo , Neuralgia/tratamento farmacológico , Alcamidas Poli-Insaturadas/uso terapêuticoRESUMO
Enhancing endocannabinoid signaling produces anxiolytic- and antidepressant-like effects, but the neural circuits involved remain poorly understood. The medial habenula (MHb) is a phylogenetically-conserved epithalamic structure that is a powerful modulator of anxiety- and depressive-like behavior. Here, we show that a robust endocannabinoid signaling system modulates synaptic transmission between the MHb and its sole identified GABA input, the medial septum and nucleus of the diagonal band (MSDB). With RNAscope in situ hybridization, we demonstrate that key enzymes that synthesize or degrade the endocannabinoids 2-arachidonylglycerol (2-AG) or anandamide are expressed in the MHb and MSDB, and that cannabinoid receptor 1 (CB1) is expressed in the MSDB. Electrophysiological recordings in MHb neurons revealed that endogenously-released 2-AG retrogradely depresses GABA input from the MSDB. This endocannabinoid-mediated depolarization-induced suppression of inhibition (DSI) was limited by monoacylglycerol lipase (MAGL) but not by fatty acid amide hydrolase. Anatomic and optogenetic circuit mapping indicated that MSDB GABA neurons monosynaptically project to cholinergic neurons of the ventral MHb. To test the behavioral significance of this MSDB-MHb endocannabinoid signaling, we induced MSDB-specific knockout of CB1 or MAGL via injection of virally-delivered Cre recombinase into the MSDB of Cnr1loxP/loxP or MgllloxP/loxP mice. Relative to control mice, MSDB-specific knockout of CB1 or MAGL bidirectionally modulated 2-AG signaling in the ventral MHb and led to opposing effects on anxiety- and depressive-like behavior. Thus, depression of synaptic GABA release in the MSDB-ventral MHb pathway may represent a potential mechanism whereby endocannabinoids exert anxiolytic and antidepressant-like effects.
Assuntos
Endocanabinoides , Monoacilglicerol Lipases , Animais , Ansiedade , Camundongos , Monoacilglicerol Lipases/metabolismo , Receptor CB1 de Canabinoide/genética , Transdução de Sinais , Transmissão SinápticaRESUMO
Due to its heterogeneity, the prediction of posttraumatic stress disorder (PTSD) development after traumtic injury is difficult. Recent machine learning approaches have yielded insight into predicting PTSD symptom trajectories. Using data collected within 1 month of traumatic injury, we applied eXtreme Gradient Boosting (XGB) to classify admitted and discharged patients (hospitalized, n = 192; nonhospitalized, n = 214), recruited from a Level 1 trauma center, according to PTSD symptom trajectories. Trajectories were identified using latent class mixed models on PCL-5 scores collected at baseline, 1-3 months posttrauma, and 6 months posttrauma. In both samples, nonremitting, remitting, and resilient PTSD symptom trajectories were identified. In the admitted patient sample, a unique delayed trajectory emerged. Machine learning classifiers (i.e., XGB) were developed and tested on the admitted patient sample and externally validated on the discharged sample with biological and clinical self-report baseline variables as predictors. For external validation sets, prediction was fair for nonremitting versus other trajectories, areas under the curve (AUC = .70); good for nonremitting versus resilient trajectories, AUCs = .73-.76; and prediction failed for nonremitting versus remitting trajectories, AUCs = .46-.48. However, poor precision (< .57) across all models suggests limited generalizability of nonremitting symptom trajectory prediction from admitted to discharged patient samples. Consistency in symptom trajectory identification across samples supports prior studies on the stability of PTSD symptom trajectories following trauma exposure; however, continued work and replication with larger samples are warranted to understand overlapping and unique predictive features of PTSD in different traumatic injury populations.
Assuntos
Transtornos de Estresse Pós-Traumáticos , Humanos , Transtornos de Estresse Pós-Traumáticos/diagnóstico , Fatores de Risco , Aprendizado de Máquina , Área Sob a Curva , AutorrelatoRESUMO
Early life stress (ELS) increases predisposition to depression. We compared the effects of treatment with the fatty acid amide hydrolase (FAAH) inhibitor URB597, and the selective serotonin reuptake inhibitor paroxetine, on ELS-induced depressive-like behavior and the expression of microRNAs (miRs) associated with depression in the medial prefrontal cortex (mPFC), hippocampal CA1 area, lateral habenula and dorsal raphe in rats. We also examined the mRNA expression of serotonergic (htr1a and slc6a4) and endocannabinoid (cnr1, cnr2 and faah) targets in the mPFC following ELS and pharmacological treatment. Adult males and females exposed to the 'Limited Bedding and Nesting' ELS paradigm demonstrated a depressive-like phenotype and late-adolescence URB597 treatment, but not paroxetine, reversed this phenotype. In the mPFC, ELS downregulated miR-16 in males and miR-135a in females and URB597 treatment restored this effect. In ELS females, the increase in cnr2 and decrease in faah mRNAs in the mPFC were reversed by URB597 treatment. We show for the first time that URB597 reversed ELS-induced mPFC downregulation in specific miRs and stress-related behaviors, suggesting a novel mechanism for the beneficial effects of FAAH inhibition. The differential effects of ELS and URB597 on males and females highlight the importance of developing sex-specific treatment approaches.
Assuntos
Amidoidrolases , MicroRNAs , Estresse Psicológico , Animais , Feminino , Masculino , Ratos , Amidoidrolases/antagonistas & inibidores , Amidoidrolases/metabolismo , Benzamidas/farmacologia , Benzamidas/uso terapêutico , Endocanabinoides/metabolismo , MicroRNAs/genética , Estresse Psicológico/genética , Estresse Psicológico/metabolismoRESUMO
BACKGROUND: The goals of this study were to determine whether serum concentrations of endocannabinoids (eCB) and related lipids predict disease status in patients with amyotrophic lateral sclerosis (ALS) relative to healthy controls, and whether concentrations correlate with disease duration and severity. METHODS: Serum concentrations of the eCBs 2-arachidonoylglycerol (2-AG) and N-arachidonoylethanolamine (AEA), and related lipids palmitoylethanolamine (PEA), oleoylethanolamine (OEA), and 2-oleoylglycerol (2-OG), were measured in samples from 47 patients with ALS and 19 healthy adults. Hierarchical binary logistic and linear regression analyses assessed whether lipid concentrations predicted disease status (ALS or healthy control), duration, or severity. RESULTS: Binary logistic regression revealed that, after controlling for age and gender, 2-AG, 2-OG and AEA concentrations were unique predictors of the presence of ALS, demonstrating odds ratios of 0.86 (P = .039), 1.03 (P = .023), and 42.17 (P = .026), respectively. When all five lipids and covariates (age, sex, race, ethnicity, body mass index, presence of a feeding tube) were included, the resulting model had an overall classification accuracy of 92.9%. Hierarchical linear regression analyses indicated that in patients with ALS, AEA and OEA inversely correlated with disease duration (P = .030 and .031 respectively), while PEA demonstrated a positive relationship with disease duration (P = .013). None of the lipids examined predicted disease severity. CONCLUSIONS: These findings support previous studies indicating significant alterations in concentrations of circulating lipids in patients with ALS. They suggest that arachidonic and oleic acid containing small lipids may serve as biomarkers for identifying the presence and duration of this disease.
Assuntos
Esclerose Lateral Amiotrófica/diagnóstico , Endocanabinoides/sangue , Lipídeos/sangue , Adulto , Ácidos Araquidônicos/sangue , Biomarcadores/sangue , Feminino , Glicerídeos/sangue , Humanos , Masculino , Pessoa de Meia-Idade , Alcamidas Poli-Insaturadas/sangue , Índice de Gravidade de DoençaRESUMO
BACKGROUND: Cyclic vomiting syndrome (CVS) is a chronic functional GI disorder; a characteristic compulsive "hot-water bathing" pattern is reported to alleviate symptoms during an acute episode. There is limited data on this bathing pattern: proposed mechanisms include core temperature increase via effects on cannabinoid type 1 receptors in the brain, skin transient receptor potential vanilloid 1 receptor stimulation, and blood flow shift from viscera to skin. AIMS: We thus sought to characterize the hot-water bathing pattern in patients with CVS and identify differences between heavy cannabis users in comparison to occasional and non-users. METHODS: We conducted a cross-sectional study of 111 patients with CVS at a single tertiary referral center. Questionnaires regarding clinical characteristics, hot-water bathing, and cannabis use were administered. Patients were classified based on cannabis usage into regular cannabis users (≥ 4 times/week), and occasional + non-users (< 4 times/week and no current use). RESULTS: A total of 81 (73%) respondents reported the hot-water bathing behavior during an episode. The majority (> 80%) noted a marked improvement in nausea, vomiting, abdominal pain and symptoms associated with panic. Regular cannabis users were more likely to use "very-hot" water (50% vs. 16%, p = 0.01) and time to relief of symptoms was longer (> 10 min) in this group, compared to the rest of the cohort. CONCLUSIONS: Hot-water bathing relieves both GI and symptoms related to panic in most patients which appear to be modulated by chronic cannabis use. These findings can help inform future physiologic studies in CVS pathogenesis.
Assuntos
Banhos/métodos , Temperatura Alta/uso terapêutico , Fumar Maconha/efeitos adversos , Fumar Maconha/terapia , Vômito/etiologia , Vômito/terapia , Dor Abdominal/etiologia , Dor Abdominal/fisiopatologia , Dor Abdominal/terapia , Adulto , Estudos Transversais/métodos , Feminino , Humanos , Masculino , Fumar Maconha/fisiopatologia , Pessoa de Meia-Idade , Autocuidado/métodos , Vômito/fisiopatologiaRESUMO
Endocannabinoid signaling regulates feeding and metabolic processes and has been linked to obesity development. Several hormonal signals, such as glucocorticoids and ghrelin, regulate feeding and metabolism by engaging the endocannabinoid system. Similarly, studies have suggested that leptin interacts with the endocannabinoid system, yet the mechanism and functional relevance of this interaction remain elusive. Therefore, we explored the interaction between leptin and endocannabinoid signaling with a focus on fatty acid amide hydrolase (FAAH), the primary degradative enzyme for the endocannabinoid N-arachidonoylethanolamine (anandamide; AEA). Mice deficient in leptin exhibited elevated hypothalamic AEA levels and reductions in FAAH activity while leptin administration to WT mice reduced AEA content and increased FAAH activity. Following high fat diet exposure, mice developed resistance to the effects of leptin administration on hypothalamic AEA content and FAAH activity. At a functional level, pharmacological inhibition of FAAH was sufficient to prevent leptin-mediated effects on body weight and food intake. Using a novel knock-in mouse model recapitulating a common human polymorphism (FAAH C385A; rs324420), which reduces FAAH activity, we investigated whether human genetic variance in FAAH affects leptin sensitivity. While WT (CC) mice were sensitive to leptin-induced reductions in food intake and body weight gain, low-expressing FAAH (AA) mice were unresponsive. These data demonstrate that FAAH activity is required for leptin's hypophagic effects and, at a translational level, suggest that a genetic variant in the FAAH gene contributes to differences in leptin sensitivity in human populations.
Assuntos
Amidoidrolases/metabolismo , Ácidos Araquidônicos/metabolismo , Ingestão de Alimentos , Endocanabinoides/metabolismo , Metabolismo Energético/efeitos dos fármacos , Hipotálamo/metabolismo , Leptina/farmacologia , Alcamidas Poli-Insaturadas/metabolismo , Amidoidrolases/genética , Animais , Peso Corporal/efeitos dos fármacos , Peso Corporal/genética , Gorduras na Dieta/farmacologia , Ingestão de Alimentos/efeitos dos fármacos , Ingestão de Alimentos/genética , Técnicas de Introdução de Genes , Leptina/deficiência , Masculino , Camundongos , Camundongos Knockout , Polimorfismo GenéticoRESUMO
BACKGROUND: Exercise has been examined as an adjunctive treatment for substance use disorders (SUDs), yet few exercise interventions have been conducted among patients undergoing intensive outpatient (IOP) treatment, who may be the most vulnerable to relapse and for whom exercise could provide the most benefits. This study examined the effects of aerobic exercise, in addition to IOP treatment, on psychological variables and endocannabinoids in individuals with SUDs. Methods: Twenty-one SUD patients (mean age 35 years) were recruited from local IOPs. Participants were randomized to either treatment-as-usual (TAU, at their outpatient clinic) or TAU plus aerobic exercise training (EX). EX participants engaged in supervised, moderate-intensity exercise for 30 min, 3 times/week for 6 weeks. TAU participants came into the laboratory once per week for assessments and a 30-min quiet rest session. Participants provided blood samples and completed questionnaires evaluating substance use, mood states, depression, anxiety, perceived stress, self-efficacy to abstain from substance use, and craving. Data were analyzed with Mann-Whitney U tests or mixed model ANOVAs to determine group differences in outcomes acutely and over 6 weeks. Results: Over 6 weeks, there were reductions in perceived stress (p < 0.01) and craving (p < 0.05) for both groups. There were no group differences in abstinence rates or changes from baseline in self-efficacy, depression, or anxiety (p > 0.05). Acutely, both exercise and quiet rest sessions led to reductions in craving, tension, depression, anger, confusion, and total mood disturbance (all ps < 0.05). In addition, the EX group experienced acute increases in vigor and circulating concentrations of the endocannabinoid, anandamide (p < 0.01). Conclusions: An adjunctive aerobic exercise program during SUD treatment was associated with similar reductions in perceived stress and drug craving as standard care. Thirty minutes of exercise or quiet rest led to acute improvements in mood, but exercise produced the additional benefit of increases in vigor and circulating anandamide.
Assuntos
Endocanabinoides , Transtornos Relacionados ao Uso de Substâncias , Adulto , Afeto/fisiologia , Ansiedade/psicologia , Ansiedade/terapia , Exercício Físico/fisiologia , Exercício Físico/psicologia , Humanos , Transtornos Relacionados ao Uso de Substâncias/terapiaRESUMO
The cannabis-derived molecules, ∆9 tetrahydrocannabinol (THC) and cannabidiol (CBD), are both of considerable therapeutic interest for a variety of purposes, including to reduce pain and anxiety and increase sleep. In addition to their other pharmacological targets, both THC and CBD are competitive inhibitors of the equilibrative nucleoside transporter-1 (ENT-1), a primary inactivation mechanism for adenosine, and thereby increase adenosine signaling. The goal of this study was to examine the role of adenosine A2A receptor activation in the effects of intraperitoneally administered THC alone and in combination with CBD or PECS-101, a 4'-fluorinated derivative of CBD, in the cannabinoid tetrad, elevated plus maze (EPM) and marble bury assays. Comparisons between wild-type (WT) and A2AR knock out (A2AR-KO) mice were made. The cataleptic effects of THC were diminished in A2AR-KO; no other THC behaviors were affected by A2AR deletion. CBD (5 mg/kg) potentiated the cataleptic response to THC (5 mg/kg) in WT but not A2AR-KO. Neither CBD nor THC alone affected EPM behavior; their combination produced a significant increase in open/closed arm time in WT but not A2AR-KO. Both THC and CBD reduced the number of marbles buried in A2AR-KO but not WT mice. Like CBD, PECS-101 potentiated the cataleptic response to THC in WT but not A2AR-KO mice. PECS-101 also reduced exploratory behavior in the EPM in both genotypes. These results support the hypothesis that CBD and PECS-101 can potentiate the cataleptic effects of THC in a manner consistent with increased endogenous adenosine signaling.
Assuntos
Canabidiol/farmacologia , Dronabinol/farmacologia , Receptor A2A de Adenosina/metabolismo , Animais , Canabidiol/análogos & derivados , Dronabinol/administração & dosagem , Comportamento Exploratório/efeitos dos fármacos , Injeções Intraperitoneais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Receptor A2A de Adenosina/deficiênciaRESUMO
Pharmacological modulation of cannabinoid type 2 receptor (CB2R) holds promise for the treatment of numerous conditions, including inflammatory diseases, autoimmune disorders, pain, and cancer. Despite the significance of this receptor, researchers lack reliable tools to address questions concerning the expression and complex mechanism of CB2R signaling, especially in cell-type and tissue-dependent contexts. Herein, we report for the first time a versatile ligand platform for the modular design of a collection of highly specific CB2R fluorescent probes, used successfully across applications, species, and cell types. These include flow cytometry of endogenously expressing cells, real-time confocal microscopy of mouse splenocytes and human macrophages, as well as FRET-based kinetic and equilibrium binding assays. High CB2R specificity was demonstrated by competition experiments in living cells expressing CB2R at native levels. The probes were effectively applied to FACS analysis of microglial cells derived from a mouse model relevant to Alzheimer's disease.
Assuntos
Doença de Alzheimer/metabolismo , Corantes Fluorescentes/química , Microglia/metabolismo , Receptor CB2 de Canabinoide/análise , Animais , Células CHO , Cricetulus , Modelos Animais de Doenças , Citometria de Fluxo , Transferência Ressonante de Energia de Fluorescência , Humanos , Ligantes , Camundongos , Simulação de Acoplamento Molecular , Sondas Moleculares/química , Imagem Óptica , Sensibilidade e Especificidade , Transdução de SinaisRESUMO
BACKGROUND & AIMS: Some patients with cyclic vomiting syndrome (CVS) use cannabis to relieve stress and for its antiemetic properties. However, chronic cannabis use has been associated paradoxically with cannabinoid hyperemesis syndrome (CHS) and some patients with CVS are thought to have CHS. We sought to characterize patterns of cannabis use by patients with CVS and identify those who could be reclassified as having CHS. METHODS: We performed a cross-sectional study of 140 patients with CVS (72% female; mean age, 37 ± 13 y) seen at a specialized clinic. Patients were screened for cannabis use with the cannabis use disorder identification test. Patients were classified as regular (use ≥4 times/wk) or occasional users (<4 times/wk). RESULTS: Forty-one percent of patients were current cannabis users, with 21% reporting regular use. Regular users were more likely to be male and to report an anxiety diagnosis, and smoked cannabis with higher tetrahydrocannabinol content and for a longer duration. Most users reported that cannabis helped control CVS symptoms. Among all cannabis users, 50 of 57 (88%) reported that they had abstained for longer than 1 month, but only 1 user reported resolution of CVS episodes during the abstinence period. This patient subsequently resumed using cannabis but remains free of symptoms. CONCLUSIONS: Cannabis is used commonly among patients with CVS-patients report relief of symptoms with use. We found 21% of patients with CVS to be regular users, but only 1 met the Rome IV criteria for CHS. Longitudinal studies are needed to determine the relationships among cannabis use, hyperemesis, and mood symptoms.
Assuntos
Antieméticos , Cannabis , Adulto , Antieméticos/uso terapêutico , Estudos Transversais , Feminino , Humanos , Masculino , Vômito/induzido quimicamenteRESUMO
The endocannabinoid (eCB) system has emerged as a central integrator linking the perception of external and internal stimuli to distinct neurophysiological and behavioural outcomes (such as fear reaction, anxiety and stress-coping), thus allowing an organism to adapt to its changing environment. eCB signalling seems to determine the value of fear-evoking stimuli and to tune appropriate behavioural responses, which are essential for the organism's long-term viability, homeostasis and stress resilience; and dysregulation of eCB signalling can lead to psychiatric disorders. An understanding of the underlying neural cell populations and cellular processes enables the development of therapeutic strategies to mitigate behavioural maladaptation.
Assuntos
Ansiedade , Sistema Nervoso Central/metabolismo , Medo , Transdução de Sinais/fisiologia , Estresse Psicológico , Animais , Ansiedade/metabolismo , Ansiedade/terapia , Sistema Nervoso Central/citologia , Endocanabinoides/metabolismo , Medo/efeitos dos fármacos , Humanos , Estresse Psicológico/metabolismo , Estresse Psicológico/terapiaRESUMO
CB2R receptors have demonstrated beneficial effects in wound healing in several models. We therefore investigated a potential role of CB2R receptors in corneal wound healing. We examined the functional contribution of CB2R receptors to the course of wound closure in an in vivo murine model. We additionally examined corneal expression of CB2R receptors in mouse and the consequences of their activation on cellular signaling, migration and proliferation in cultured bovine corneal epithelial cells (CECs). Using a novel mouse model, we provide evidence that corneal injury increases CB2R receptor expression in cornea. The CB2R agonist JWH133 induces chemorepulsion in cultured bovine CECs but does not alter CEC proliferation. The signaling profile of CB2R activation is activating MAPK and increasing cAMP accumulation, the latter perhaps due to Gs-coupling. Lipidomic analysis in bovine cornea shows a rise in acylethanolamines including the endocannabinoid anandamide 1â¯h after injury. In vivo, CB2R deletion and pharmacological block result in a delayed course of wound closure. In summary, we find evidence that CB2R receptor promoter activity is increased by corneal injury and that these receptors are required for the normal course of wound closure, possibly via chemorepulsion.