Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nano Lett ; 23(14): 6337-6346, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37459449

RESUMO

Schwann cell (SC) transplantation represents a promising therapeutic approach for traumatic spinal cord injury but is frustrated by barrier formation, preventing cell migration, and axonal regeneration at the interface between grafted SCs and reactive resident astrocytes (ACs). Although regenerating axons successfully extend into SC grafts, only a few cross the SC-AC interface to re-enter lesioned neuropil. To date, research has focused on identifying and modifying the molecular mechanisms underlying such scarring cell-cell interactions, while the influence of substrate topography remains largely unexplored. Using a recently modified cell confrontation assay to model SC-AC barrier formation in vitro, highly oriented poly(ε-caprolactone) nanofibers were observed to reduce AC reactivity, induce extensive oriented intermingling between SCs and ACs, and ultimately enable substantial neurite outgrowth from the SC compartment into the AC territory. It is anticipated that these findings will have important implications for the future design of biomaterial-based scaffolds for nervous tissue repair.


Assuntos
Astrócitos , Neuritos , Humanos , Axônios , Regeneração Nervosa , Cicatriz/patologia , Células de Schwann/patologia , Células de Schwann/fisiologia , Células de Schwann/transplante
2.
J Neurosci Methods ; 361: 109289, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34271068

RESUMO

BACKGROUND: Molecular composition and topography of the extracellular matrix (ECM) influence regenerative cell migration following peripheral nerve injury (PNI). Advanced tissue engineering strategies for the repair of neurotmesis-type PNI include the development of nanofiber-containing implantable scaffolds that mimic features of the ECM to orchestrate regenerative growth. Reliable and quantifiable in vitro assays are required to assess the ability of such substrates to influence migration of the cell types of interest. However, most popular migration assays monitor cell migration into a cell exclusion zone (CEZ) but have dubious abilities to preserve the molecular and topographical cues of the substrate. NEW METHOD: Elastic band spacers (EBS), a simple, economical and standardized technique for the generation of well-defined CEZ based on the use of commercially available elastic bands, are introduced. RESULTS: EBS could sufficiently preserve ECM-derived molecular and poly(ε-caprolactone) (PCL) nanofiber-derived topographical cues. The application of EBS in the absence and presence of nanofiber-derived topographical cues was validated using perineurial cells and Schwann cells, both known to play key roles in peripheral nerve regeneration. COMPARISON WITH EXISTING METHODS: In contrast to EBS, commercial silicone inserts and the popular scratch assay caused substantial ECM substrate disruption, thereby preventing these techniques from being included in further investigations employing deposition of PCL nanofibers and cell migration analysis. CONCLUSIONS: EBS represent a useful addition to the existing repertoire of migration assays offering significant benefits in terms of substrate preservation. The simplicity and economy of the approach make it immediately accessible to research groups at minimal extra expense.


Assuntos
Nanofibras , Movimento Celular , Sinais (Psicologia) , Matriz Extracelular , Humanos , Nervos Periféricos , Alicerces Teciduais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA