Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 162(3): 527-39, 2015 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-26232223

RESUMO

About 12,000 years ago in the Near East, humans began the transition from hunter-gathering to agriculture-based societies. Barley was a founder crop in this process, and the most important steps in its domestication were mutations in two adjacent, dominant, and complementary genes, through which grains were retained on the inflorescence at maturity, enabling effective harvesting. Independent recessive mutations in each of these genes caused cell wall thickening in a highly specific grain "disarticulation zone," converting the brittle floral axis (the rachis) of the wild-type into a tough, non-brittle form that promoted grain retention. By tracing the evolutionary history of allelic variation in both genes, we conclude that spatially and temporally independent selections of germplasm with a non-brittle rachis were made during the domestication of barley by farmers in the southern and northern regions of the Levant, actions that made a major contribution to the emergence of early agrarian societies.


Assuntos
Evolução Biológica , Hordeum/fisiologia , Dispersão de Sementes , Sequência de Aminoácidos , Hordeum/anatomia & histologia , Hordeum/genética , Dados de Sequência Molecular , Fenótipo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Alinhamento de Sequência
2.
Nature ; 633(8031): 848-855, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39143210

RESUMO

Bread wheat (Triticum aestivum) is a globally dominant crop and major source of calories and proteins for the human diet. Compared with its wild ancestors, modern bread wheat shows lower genetic diversity, caused by polyploidisation, domestication and breeding bottlenecks1,2. Wild wheat relatives represent genetic reservoirs, and harbour diversity and beneficial alleles that have not been incorporated into bread wheat. Here we establish and analyse extensive genome resources for Tausch's goatgrass (Aegilops tauschii), the donor of the bread wheat D genome. Our analysis of 46 Ae. tauschii genomes enabled us to clone a disease resistance gene and perform haplotype analysis across a complex disease resistance locus, allowing us to discern alleles from paralogous gene copies. We also reveal the complex genetic composition and history of the bread wheat D genome, which involves contributions from genetically and geographically discrete Ae. tauschii subpopulations. Together, our results reveal the complex history of the bread wheat D genome and demonstrate the potential of wild relatives in crop improvement.


Assuntos
Aegilops , Pão , Produtos Agrícolas , Evolução Molecular , Genoma de Planta , Triticum , Aegilops/genética , Alelos , Produtos Agrícolas/genética , Resistência à Doença/genética , Domesticação , Genes de Plantas/genética , Variação Genética/genética , Genoma de Planta/genética , Haplótipos/genética , Filogenia , Melhoramento Vegetal , Doenças das Plantas/genética , Poliploidia , Triticum/genética
3.
Nature ; 615(7953): 652-659, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36890232

RESUMO

Increasing the proportion of locally produced plant protein in currently meat-rich diets could substantially reduce greenhouse gas emissions and loss of biodiversity1. However, plant protein production is hampered by the lack of a cool-season legume equivalent to soybean in agronomic value2. Faba bean (Vicia faba L.) has a high yield potential and is well suited for cultivation in temperate regions, but genomic resources are scarce. Here, we report a high-quality chromosome-scale assembly of the faba bean genome and show that it has expanded to a massive 13 Gb in size through an imbalance between the rates of amplification and elimination of retrotransposons and satellite repeats. Genes and recombination events are evenly dispersed across chromosomes and the gene space is remarkably compact considering the genome size, although with substantial copy number variation driven by tandem duplication. Demonstrating practical application of the genome sequence, we develop a targeted genotyping assay and use high-resolution genome-wide association analysis to dissect the genetic basis of seed size and hilum colour. The resources presented constitute a genomics-based breeding platform for faba bean, enabling breeders and geneticists to accelerate the improvement of sustainable protein production across the Mediterranean, subtropical and northern temperate agroecological zones.


Assuntos
Produtos Agrícolas , Diploide , Variação Genética , Genoma de Planta , Genômica , Melhoramento Vegetal , Proteínas de Plantas , Vicia faba , Cromossomos de Plantas/genética , Produtos Agrícolas/genética , Produtos Agrícolas/metabolismo , Variações do Número de Cópias de DNA/genética , DNA Satélite/genética , Amplificação de Genes/genética , Genes de Plantas/genética , Variação Genética/genética , Genoma de Planta/genética , Estudo de Associação Genômica Ampla , Geografia , Melhoramento Vegetal/métodos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Recombinação Genética , Retroelementos/genética , Sementes/anatomia & histologia , Sementes/genética , Vicia faba/anatomia & histologia , Vicia faba/genética , Vicia faba/metabolismo
4.
Nature ; 606(7912): 113-119, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35585233

RESUMO

Cultivated oat (Avena sativa L.) is an allohexaploid (AACCDD, 2n = 6x = 42) thought to have been domesticated more than 3,000 years ago while growing as a weed in wheat, emmer and barley fields in Anatolia1,2. Oat has a low carbon footprint, substantial health benefits and the potential to replace animal-based food products. However, the lack of a fully annotated reference genome has hampered efforts to deconvolute its complex evolutionary history and functional gene dynamics. Here we present a high-quality reference genome of A. sativa and close relatives of its diploid (Avena longiglumis, AA, 2n = 14) and tetraploid (Avena insularis, CCDD, 2n = 4x = 28) progenitors. We reveal the mosaic structure of the oat genome, trace large-scale genomic reorganizations in the polyploidization history of oat and illustrate a breeding barrier associated with the genome architecture of oat. We showcase detailed analyses of gene families implicated in human health and nutrition, which adds to the evidence supporting oat safety in gluten-free diets, and we perform mapping-by-sequencing of an agronomic trait related to water-use efficiency. This resource for the Avena genus will help to leverage knowledge from other cereal genomes, improve understanding of basic oat biology and accelerate genomics-assisted breeding and reanalysis of quantitative trait studies.


Assuntos
Avena , Grão Comestível , Genoma de Planta , Avena/genética , Diploide , Grão Comestível/genética , Genoma de Planta/genética , Mosaicismo , Melhoramento Vegetal , Tetraploidia
5.
Nature ; 588(7837): 284-289, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33239781

RESUMO

Genetic diversity is key to crop improvement. Owing to pervasive genomic structural variation, a single reference genome assembly cannot capture the full complement of sequence diversity of a crop species (known as the 'pan-genome'1). Multiple high-quality sequence assemblies are an indispensable component of a pan-genome infrastructure. Barley (Hordeum vulgare L.) is an important cereal crop with a long history of cultivation that is adapted to a wide range of agro-climatic conditions2. Here we report the construction of chromosome-scale sequence assemblies for the genotypes of 20 varieties of barley-comprising landraces, cultivars and a wild barley-that were selected as representatives of global barley diversity. We catalogued genomic presence/absence variants and explored the use of structural variants for quantitative genetic analysis through whole-genome shotgun sequencing of 300 gene bank accessions. We discovered abundant large inversion polymorphisms and analysed in detail two inversions that are frequently found in current elite barley germplasm; one is probably the product of mutation breeding and the other is tightly linked to a locus that is involved in the expansion of geographical range. This first-generation barley pan-genome makes previously hidden genetic variation accessible to genetic studies and breeding.


Assuntos
Cromossomos de Plantas/genética , Genoma de Planta/genética , Hordeum/genética , Internacionalidade , Mutação , Melhoramento Vegetal , Inversão Cromossômica/genética , Mapeamento Cromossômico , Loci Gênicos/genética , Genótipo , Hordeum/classificação , Polimorfismo Genético/genética , Padrões de Referência , Banco de Sementes , Inversão de Sequência , Sequenciamento Completo do Genoma
6.
Nature ; 588(7837): 277-283, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33239791

RESUMO

Advances in genomics have expedited the improvement of several agriculturally important crops but similar efforts in wheat (Triticum spp.) have been more challenging. This is largely owing to the size and complexity of the wheat genome1, and the lack of genome-assembly data for multiple wheat lines2,3. Here we generated ten chromosome pseudomolecule and five scaffold assemblies of hexaploid wheat to explore the genomic diversity among wheat lines from global breeding programs. Comparative analysis revealed extensive structural rearrangements, introgressions from wild relatives and differences in gene content resulting from complex breeding histories aimed at improving adaptation to diverse environments, grain yield and quality, and resistance to stresses4,5. We provide examples outlining the utility of these genomes, including a detailed multi-genome-derived nucleotide-binding leucine-rich repeat protein repertoire involved in disease resistance and the characterization of Sm16, a gene associated with insect resistance. These genome assemblies will provide a basis for functional gene discovery and breeding to deliver the next generation of modern wheat cultivars.


Assuntos
Variação Genética , Genoma de Planta/genética , Genômica , Internacionalidade , Melhoramento Vegetal/métodos , Triticum/genética , Aclimatação/genética , Animais , Centrômero/genética , Centrômero/metabolismo , Mapeamento Cromossômico , Clonagem Molecular , Variações do Número de Cópias de DNA/genética , Elementos de DNA Transponíveis/genética , Grão Comestível/genética , Grão Comestível/crescimento & desenvolvimento , Genes de Plantas/genética , Introgressão Genética , Haplótipos , Insetos/patogenicidade , Proteínas NLR/genética , Doenças das Plantas/genética , Proteínas de Plantas/genética , Polimorfismo de Nucleotídeo Único/genética , Poliploidia , Triticum/classificação , Triticum/crescimento & desenvolvimento
7.
Mol Biol Evol ; 41(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38243866

RESUMO

Vascular plants have segmented body axes with iterative nodes and internodes. Appropriate node initiation and internode elongation are fundamental to plant fitness and crop yield; however, how these events are spatiotemporally coordinated remains elusive. We show that in barley (Hordeum vulgare L.), selections during domestication have extended the apical meristematic phase to promote node initiation, but constrained subsequent internode elongation. In both vegetative and reproductive phases, internode elongation displays a dynamic proximal-distal gradient, and among subpopulations of domesticated barleys worldwide, node initiation and proximal internode elongation are associated with latitudinal and longitudinal gradients, respectively. Genetic and functional analyses suggest that, in addition to their converging roles in node initiation, flowering-time genes have been repurposed to specify the timing and duration of internode elongation. Our study provides an integrated view of barley node initiation and internode elongation and suggests that plant architecture should be recognized as a collection of dynamic phytomeric units in the context of crop adaptive evolution.


Assuntos
Adaptação Biológica , Hordeum , Hordeum/genética , Hordeum/crescimento & desenvolvimento , Domesticação
8.
Nucleic Acids Res ; 51(6): 2641-2654, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36864547

RESUMO

Chromatids of mitotic chromosomes were suggested to coil into a helix in early cytological studies and this assumption was recently supported by chromosome conformation capture (3C) sequencing. Still, direct differential visualization of a condensed chromatin fibre confirming the helical model was lacking. Here, we combined Hi-C analysis of purified metaphase chromosomes, biopolymer modelling and spatial structured illumination microscopy of large fluorescently labeled chromosome segments to reveal the chromonema - a helically-wound, 400 nm thick chromatin thread forming barley mitotic chromatids. Chromatin from adjacent turns of the helix intermingles due to the stochastic positioning of chromatin loops inside the chromonema. Helical turn size varies along chromosome length, correlating with chromatin density. Constraints on the observable dimensions of sister chromatid exchanges further supports the helical chromonema model.


Assuntos
Cromátides , Hordeum , Metáfase , Cromátides/química , Cromatina/genética , Cromossomos , Microscopia , Troca de Cromátide Irmã , Cromossomos de Plantas , Hordeum/citologia
9.
Proc Natl Acad Sci U S A ; 119(31): e2201350119, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35881796

RESUMO

Root angle in crops represents a key trait for efficient capture of soil resources. Root angle is determined by competing gravitropic versus antigravitropic offset (AGO) mechanisms. Here we report a root angle regulatory gene termed ENHANCED GRAVITROPISM1 (EGT1) that encodes a putative AGO component, whose loss-of-function enhances root gravitropism. Mutations in barley and wheat EGT1 genes confer a striking root phenotype, where every root class adopts a steeper growth angle. EGT1 encodes an F-box and Tubby domain-containing protein that is highly conserved across plant species. Haplotype analysis found that natural allelic variation at the barley EGT1 locus impacts root angle. Gravitropic assays indicated that Hvegt1 roots bend more rapidly than wild-type. Transcript profiling revealed Hvegt1 roots deregulate reactive oxygen species (ROS) homeostasis and cell wall-loosening enzymes and cofactors. ROS imaging shows that Hvegt1 root basal meristem and elongation zone tissues have reduced levels. Atomic force microscopy measurements detected elongating Hvegt1 root cortical cell walls are significantly less stiff than wild-type. In situ analysis identified HvEGT1 is expressed in elongating cortical and stele tissues, which are distinct from known root gravitropic perception and response tissues in the columella and epidermis, respectively. We propose that EGT1 controls root angle by regulating cell wall stiffness in elongating root cortical tissue, counteracting the gravitropic machinery's known ability to bend the root via its outermost tissues. We conclude that root angle is controlled by EGT1 in cereal crops employing an antigravitropic mechanism.


Assuntos
Produtos Agrícolas , Gravitropismo , Hordeum , Proteínas de Plantas , Raízes de Plantas , Parede Celular/química , Produtos Agrícolas/química , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Gravitropismo/genética , Hordeum/química , Hordeum/genética , Hordeum/crescimento & desenvolvimento , Microscopia de Força Atômica , Proteínas de Plantas/genética , Proteínas de Plantas/fisiologia , Raízes de Plantas/química , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Espécies Reativas de Oxigênio/metabolismo , Transcrição Gênica
10.
Plant Cell Environ ; 47(7): 2675-2692, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38600764

RESUMO

The restriction of plant-symbiont dinitrogen fixation by an insect semiochemical had not been previously described. Here we report on a glycosylated triketide δ-lactone from Nephrotoma cornicina crane flies, cornicinine, that causes chlorosis in the floating-fern symbioses from the genus Azolla. Only the glycosylated trans-A form of chemically synthesized cornicinine was active: 500 nM cornicinine in the growth medium turned all cyanobacterial filaments from Nostoc azollae inside the host leaf-cavities into akinetes typically secreting CTB-bacteriocins. Cornicinine further inhibited akinete germination in Azolla sporelings, precluding re-establishment of the symbiosis during sexual reproduction. It did not impact development of the plant Arabidopsis thaliana or several free-living cyanobacteria from the genera Anabaena or Nostoc but affected the fern host without cyanobiont. Fern-host mRNA sequencing from isolated leaf cavities confirmed high NH4-assimilation and proanthocyanidin biosynthesis in this trichome-rich tissue. After cornicinine treatment, it revealed activation of Cullin-RING ubiquitin-ligase-pathways, known to mediate metabolite signaling and plant elicitation consistent with the chlorosis phenotype, and increased JA-oxidase, sulfate transport and exosome formation. The work begins to uncover molecular mechanisms of cyanobiont differentiation in a seed-free plant symbiosis important for wetland ecology or circular crop-production today, that once caused massive CO2 draw-down during the Eocene geological past.


Assuntos
Dípteros , Gleiquênias , Lactonas , Nostoc , Gleiquênias/citologia , Gleiquênias/metabolismo , Gleiquênias/microbiologia , Gleiquênias/fisiologia , Lactonas/química , Lactonas/metabolismo , Nostoc/genética , Nostoc/fisiologia , Dípteros/química , Simbiose , Arabidopsis/efeitos dos fármacos , Arabidopsis/crescimento & desenvolvimento , Nitratos/metabolismo , RNA Bacteriano/metabolismo , Bacteriocinas/genética , Folhas de Planta/metabolismo
11.
Am J Bot ; 111(10): e16410, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39347651

RESUMO

PREMISE: Molecular studies based on chloroplast markers have questioned the monophyly of the fern genus Pecluma (Polypodioideae, Polypodiaceae), which has several species of Polypodium nested within it. We explored the delimitation of Pecluma and its biogeographic pattern by evaluating the phylogenetic position of four Polypodium species not sequenced thus far and integrating the first fossil evidence of Pecluma. METHODS: Using herbarium material, we applied a genome-skimming approach to obtain a phylogenetic hypothesis of Polypodioideae; assessed the combination of character states observed in the fossil from Miocene Dominican amber using a previously published phylogeny of Polypodioideae based on four plastid markers as framework; calculated divergence times; and conducted an ancestral area estimation. RESULTS: Within Polypodioideae, Pecluma was recovered as sister to Phlebodium. Three of the newly sequenced species-Polypodium otites, P. pinnatissimum, and P. ursipes-were recovered with maximum support within the Pecluma clade, whereas P. christensenii remained within Polypodium. The closest combination of character states of the fossil was found within Pecluma. Our biogeographic analyses suggest an Eocene origin of the genus in South America, with several subsequent Oligocene and Miocene colonization events to Mexico-Central America and to the West Indies. CONCLUSIONS: Although the circumscription of Pecluma is still challenging, our results elucidate the origin and age of the genus. The newly described fossil, Pecluma hispaniolae sp. nov., supports the hypothesis that the epiphytic communities of the Greater Antilles exhibit a constant generic composition since the Miocene. We propose new combinations (Pecluma otites, Pecluma pinnatissima, and Pecluma ursipes) to accommodate three species previously classified in Polypodium.


Assuntos
Âmbar , Evolução Biológica , Fósseis , Filogenia , Fósseis/anatomia & histologia , Polypodiaceae/genética , Polypodiaceae/anatomia & histologia , Gleiquênias/genética , Gleiquênias/classificação , Genomas de Plastídeos
12.
Proc Natl Acad Sci U S A ; 118(34)2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34400501

RESUMO

Genebanks collect and preserve vast collections of plants and detailed passport information, with the aim of preserving genetic diversity for conservation and breeding. Genetic characterization of such collections has the potential to elucidate the genetic histories of important crops, use marker-trait associations to identify loci controlling traits of interest, search for loci undergoing selection, and contribute to genebank management by identifying taxonomic misassignments and duplicates. We conducted a genomic scan with genotyping by sequencing (GBS) derived single nucleotide polymorphisms (SNPs) of 10,038 pepper (Capsicum spp.) accessions from worldwide genebanks and investigated the recent history of this iconic staple. Genomic data detected up to 1,618 duplicate accessions within and between genebanks and showed that taxonomic ambiguity and misclassification often involve interspecific hybrids that are difficult to classify morphologically. We deeply interrogated the genetic diversity of the commonly consumed Capsicum annuum to investigate its history, finding that the kinds of peppers collected in broad regions across the globe overlap considerably. The method ReMIXTURE-using genetic data to quantify the similarity between the complement of peppers from a focal region and those from other regions-was developed to supplement traditional population genetic analyses. The results reflect a vision of pepper as a highly desirable and tradable cultural commodity, spreading rapidly throughout the globe along major maritime and terrestrial trade routes. Marker associations and possible selective sweeps affecting traits such as pungency were observed, and these traits were shown to be distributed nonuniformly across the globe, suggesting that human preferences exerted a primary influence over domesticated pepper genetic structure.


Assuntos
Capsicum/genética , Cromossomos de Plantas/genética , Genética Populacional , Genoma de Planta , Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Capsicum/crescimento & desenvolvimento , Genômica
13.
Plant J ; 111(3): 849-858, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35678640

RESUMO

Crop-wild gene flow is common when domesticated plants and their wild relatives grow close to each other. The resultant hybrid forms appear as semi-domesticates and were sometimes considered as missing links between crops and their wild progenitors. Wild-growing barleys in Central and Eastern Asia, named Hordeum agriocrithon, show hallmark characters of both wild and domesticated forms. Their spikes disintegrate at maturity to disperse without human intervention, but bear lateral grains, which were favored by early farmers and are absent from other wild barleys. As an intermediate form, H. agriocrithon has been proposed several times as a progenitor of domesticated barley. Here, we used genome-wide marker data and whole-genome resequencing to show that all H. agriocrithon accessions of a major germplasm collection are hybrid forms that arose multiple times by admixture of diverse domesticated and wild populations. Although H. agriocrithon barleys have not played a special role in barley domestication, future analysis of the adaptative potential of bi-directional crop-wild gene flow in extant barleys may prove a fertile research field.


Assuntos
Hordeum , Produtos Agrícolas/genética , Domesticação , Genes de Plantas , Hordeum/genética , Humanos , Análise de Sequência de DNA
14.
Plant J ; 112(4): 897-918, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36073999

RESUMO

Breeding has increasingly altered the genetics of crop plants since the domestication of their wild progenitors. It is postulated that the genetic diversity of elite wheat breeding pools is too narrow to cope with future challenges. In contrast, plant genetic resources (PGRs) of wheat stored in genebanks are valuable sources of unexploited genetic diversity. Therefore, to ensure breeding progress in the future, it is of prime importance to identify the useful allelic diversity available in PGRs and to transfer it into elite breeding pools. Here, a diverse collection consisting of modern winter wheat cultivars and genebank accessions was investigated based on reduced-representation genomic sequencing and an iSelect single nucleotide polymorphism (SNP) chip array. Analyses of these datasets provided detailed insights into population structure, levels of genetic diversity, sources of new allelic diversity, and genomic regions affected by breeding activities. We identified 57 regions representing genomic signatures of selection and 827 regions representing private alleles associated exclusively with genebank accessions. The presence of known functional wheat genes, quantitative trait loci, and large chromosomal modifications, i.e., introgressions from wheat wild relatives, provided initial evidence for putative traits associated within these identified regions. These findings were supported by the results of ontology enrichment analyses. The results reported here will stimulate further research and promote breeding in the future by allowing for the targeted introduction of novel allelic diversity into elite wheat breeding pools.


Assuntos
Pão , Triticum , Triticum/genética , Alelos , Melhoramento Vegetal , Genoma de Planta/genética , Polimorfismo de Nucleotídeo Único/genética
15.
Plant J ; 110(1): 179-192, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34997796

RESUMO

Aegilops is a close relative of wheat (Triticum spp.), and Aegilops species in the section Sitopsis represent a rich reservoir of genetic diversity for the improvement of wheat. To understand their diversity and advance their utilization, we produced whole-genome assemblies of Aegilops longissima and Aegilops speltoides. Whole-genome comparative analysis, along with the recently sequenced Aegilops sharonensis genome, showed that the Ae. longissima and Ae. sharonensis genomes are highly similar and are most closely related to the wheat D subgenome. By contrast, the Ae. speltoides genome is more closely related to the B subgenome. Haplotype block analysis supported the idea that Ae. speltoides genome is closest to the wheat B subgenome, and highlighted variable and similar genomic regions between the three Aegilops species and wheat. Genome-wide analysis of nucleotide-binding leucine-rich repeat (NLR) genes revealed species-specific and lineage-specific NLR genes and variants, demonstrating the potential of Aegilops genomes for wheat improvement.


Assuntos
Aegilops , Aegilops/genética , Genoma de Planta/genética , Filogenia , Poaceae/genética , Triticum/genética
16.
Mol Biol Evol ; 2022 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-35687854

RESUMO

The genomic landscape of recombination plays an essential role in evolution. Patterns of recombination are highly variable along chromosomes, between sexes, individuals, populations, and species. In many eukaryotes, recombination rates are elevated in sub-telomeric regions and drastically reduced near centromeres, resulting in large low-recombining (LR) regions. The processes of recombination are influenced by genetic factors, such as different alleles of genes involved in meiosis and chromatin structure, as well as external environmental stimuli like temperature and overall stress. In this work, we focused on the genomic landscapes of recombination in a collection of 916 rye (Secale cereale) individuals. By analysing population structure among individuals of different domestication status and geographic origin, we detected high levels of admixture, reflecting the reproductive biology of a self-incompatible, wind-pollinating grass species. We then analysed patterns of recombination in overlapping subpopulations, which revealed substantial variation in the physical size of LR regions, with a tendency for larger LR regions in domesticated subpopulations. Genome-wide association scans (GWAS) for LR region size revealed a major quantitative-trait-locus (QTL) at which, among 18 annotated genes, an ortholog of histone H4 acetyltransferase ESA1 was located. Rye individuals belonging to domesticated subpopulations showed increased synaptonemal complex length, but no difference in crossover frequency, indicating that only the recombination landscape is different. Furthermore, the genomic region harbouring rye ScESA1 showed moderate patterns of selection in domesticated subpopulations, suggesting that larger LR regions were indirectly selected for during domestication to achieve more homogeneous populations for agricultural use.

17.
Appl Environ Microbiol ; 89(1): e0142822, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36541797

RESUMO

The number of genes encoding ß-oxidation enzymes in Cupriavidus necator H16 (synonym, Ralstonia eutropha H16) is high, but only the operons A0459-A0464 and A1526-A1531, each encoding four genes for ß-oxidation enzymes, were expressed during growth with long-chain-length fatty acids (LCFAs). However, we observed that C. necator ΔA0459-A0464 ΔA1526-A1531 and C. necator H16 showed the same growth behavior during growth with decanoic acid and shorter FAs. The negative effect of the deletion of these two operons increased with an increasing chain length of the utilized FAs. Transcriptome sequencing (RNA-Seq) revealed the expression profiles of genes involved in the catabolism of medium-chain-length fatty acids (MCFAs) in C. necator H16. Operon A0459-A0464 was expressed only during growth with nonanoic acid, whereas operon A1526-A1531 was highly expressed during growth with octanoic and nonanoic acid. The gene clusters B1187-B1192 and B0751-B0759 showed a log2 fold change in expression of up to 4.29 and 4.02, respectively, during growth with octanoic acid and up to 8.82 and 5.50, respectively, with nonanoic acid compared to sodium gluconate-grown cells. Several acyl-CoA ligases catalyze the activation of MCFAs with coenzyme A (CoA), but fadD3 (A3288), involved in activation of LCFAs, was not detected. The expression profiles of C. necator strain ΔA0459-A0464 ΔA1526-A1531 showed that the growth with nonanoic acid resulted in the expression of further ß-oxidation enzyme-encoding genes. Additional insights into the transport of FAs in C. necator H16 revealed the complexity and putative involvement of the DegV-like protein encoded by A0463 in the transport of odd-chain-length FAs and of siderophore biosynthesis in the transport mechanism. IMPORTANCE Although Cupriavidus necator H16 has been used in several studies to produce polyhydroxyalkanoates from various lipids, the fatty acid metabolism is poorly understood. The ß-oxidation of long-chain-length FAs has been investigated, but the tremendous number of homologous genes encoding ß-oxidation enzymes hides the potential for variances in the expressed genes for catabolism of shorter FAs. The catabolism of medium-chain-length FAs and connected pathways has not been investigated yet. As more sustainable substrates such as lipids and the production of fatty acids and fatty acid derivates become more critical with the dependency on fossil-based substances, understanding the complex metabolism in this highly diverse workhorse for biotechnology, C. necator, is inevitable. For further metabolic engineering and construction of production strains, we investigated the metabolism during growth on medium-chain-length FAs by RNA-Seq.


Assuntos
Cupriavidus necator , Poli-Hidroxialcanoatos , Cupriavidus necator/metabolismo , Transcriptoma , Ácidos Graxos/metabolismo , Poli-Hidroxialcanoatos/metabolismo
18.
Chromosome Res ; 30(4): 335-349, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35781770

RESUMO

The B chromosome (B) is a dispensable component of the genome in many species. To evaluate the impact of Bs on the transcriptome of the standard A chromosomes (A), comparative RNA-seq analyses of rye and wheat anthers with and without additional rye Bs were conducted. In both species, 5-6% of the A-derived transcripts across the entire genomes were differentially expressed in the presence of 2Bs. The GO term enrichment analysis revealed that Bs influence A chromosome encoded processes like "gene silencing"; "DNA methylation or demethylation"; "chromatin silencing"; "negative regulation of gene expression, epigenetic"; "post-embryonic development"; and "chromosome organization." 244 B chromosome responsive A-located genes in + 2B rye and + B wheat shared the same biological function. Positively correlated with the number of Bs, 939 and 1391 B-specific transcripts were identified in + 2B and + 4B wheat samples, respectively. 85% of B-transcripts in + 2B were also found in + 4B transcriptomes. 297 B-specific transcripts were identified in + 2B rye, and 27% were common to the B-derived transcripts identified in + B wheat. Bs encode mobile elements and housekeeping genes, but most B-transcripts were without detectable similarity to known genes. Some of these genes are involved in cell division-related functions like Nuf2 and might indicate their importance in maintaining Bs. The transcriptome analysis provides new insights into the complex interrelationship between standard A chromosomes and supernumerary B chromosomes.


Assuntos
Genoma de Planta , Secale , Secale/genética , Hibridização in Situ Fluorescente , Cromossomos , Mitose
19.
Nature ; 544(7651): 427-433, 2017 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-28447635

RESUMO

Cereal grasses of the Triticeae tribe have been the major food source in temperate regions since the dawn of agriculture. Their large genomes are characterized by a high content of repetitive elements and large pericentromeric regions that are virtually devoid of meiotic recombination. Here we present a high-quality reference genome assembly for barley (Hordeum vulgare L.). We use chromosome conformation capture mapping to derive the linear order of sequences across the pericentromeric space and to investigate the spatial organization of chromatin in the nucleus at megabase resolution. The composition of genes and repetitive elements differs between distal and proximal regions. Gene family analyses reveal lineage-specific duplications of genes involved in the transport of nutrients to developing seeds and the mobilization of carbohydrates in grains. We demonstrate the importance of the barley reference sequence for breeding by inspecting the genomic partitioning of sequence variation in modern elite germplasm, highlighting regions vulnerable to genetic erosion.


Assuntos
Cromossomos de Plantas/genética , Genoma de Planta/genética , Hordeum/genética , Núcleo Celular/genética , Centrômero/genética , Cromatina/genética , Cromatina/metabolismo , Mapeamento Cromossômico , Cromossomos Artificiais Bacterianos/genética , Variação Genética , Genômica , Haplótipos/genética , Meiose/genética , Sequências Repetitivas de Ácido Nucleico/genética , Sementes/genética
20.
Int J Mol Sci ; 24(15)2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37569441

RESUMO

Plants respond to drought by the major reprogramming of gene expression, enabling the plant to survive this threatening environmental condition. The phytohormone abscisic acid (ABA) serves as a crucial upstream signal, inducing this multifaceted process. This report investigated the drought response in barley plants (Hordeum vulgare, cv. Morex) at both the epigenome and transcriptome levels. After a ten-day drought period, during which the soil water content was reduced by about 35%, the relative chlorophyll content, as well as the photosystem II efficiency of the barley leaves, decreased by about 10%. Furthermore, drought-related genes such as HvS40 and HvA1 were already induced compared to the well-watered controls. Global ChIP-Seq analysis was performed to identify genes in which histones H3 were modified with euchromatic K4 trimethylation or K9 acetylation during drought. By applying stringent exclusion criteria, 129 genes loaded with H3K4me3 and 2008 genes loaded with H3K9ac in response to drought were identified, indicating that H3K9 acetylation reacts to drought more sensitively than H3K4 trimethylation. A comparison with differentially expressed genes enabled the identification of specific genes loaded with the euchromatic marks and induced in response to drought treatment. The results revealed that a major proportion of these genes are involved in ABA signaling and related pathways. Intriguingly, two members of the protein phosphatase 2C family (PP2Cs), which play a crucial role in the central regulatory machinery of ABA signaling, were also identified through this approach.


Assuntos
Hordeum , Hordeum/metabolismo , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , Código das Histonas , Secas , Transcriptoma , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA