Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 128(13): 131101, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35426712

RESUMO

Using a holographic derivation of a quantum effective action for a scalar operator at strong coupling, we compute quasiequilibrium parameters relevant for the gravitational wave signal from a first-order phase transition in a simple dual model. We discuss how the parameters of the phase transition vary with the effective number of degrees of freedom of the dual field theory. Our model can produce an observable signal at LISA if the critical temperature is around a TeV, in a parameter region where the field theory has an approximate conformal symmetry.

2.
Phys Rev Lett ; 125(2): 021302, 2020 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-32701335

RESUMO

We have performed the first three-dimensional simulations of strong first-order thermal phase transitions in the early universe. For deflagrations, we find that the rotational component of the fluid velocity increases as the transition strength is increased. For detonations, however, the rotational velocity component remains constant and small. We also find that the efficiency with which kinetic energy is transferred to the fluid falls below theoretical expectations as we increase the transition strength. The probable origin of the kinetic energy deficit is the formation of reheated droplets of the metastable phase during the collision, slowing the bubble walls. The rate of increase in the gravitational wave energy density for deflagrations in strong transitions is suppressed compared to that predicted in earlier work. This is largely accounted for by the reduction in kinetic energy. Current modeling therefore substantially overestimates the gravitational wave signal for strong transitions with deflagrations, in the most extreme case by a factor of 10^{3}. Detonations are less affected.

3.
Phys Rev Lett ; 124(2): 021301, 2020 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-32004021

RESUMO

In the QCD axion dark matter scenario with postinflationary Peccei-Quinn symmetry breaking, the number density of axions, and hence the dark matter density, depends on the length of string per unit volume at cosmic time t, by convention written ζ/t^{2}. The expectation has been that the dimensionless parameter ζ tends to a constant ζ_{0}, a feature of a string network known as scaling. It has recently been claimed that in larger numerical simulations ζ shows a logarithmic increase with time, while theoretical modeling suggests an inverse logarithmic correction. Either case would result in a large enhancement of the string density at the QCD transition, and a substantial revision to the axion mass required for the axion to constitute all of the dark matter. With a set of new simulations of global strings, we compare the standard scaling (constant-ζ) model to the logarithmic growth and inverse-logarithmic correction models. In the standard scaling model, by fitting to linear growth in the mean string separation ξ=t/sqrt[ζ], we find ζ_{0}=1.19±0.20. We conclude that the apparent corrections to ζ are artifacts of the initial conditions, rather than a property of the scaling network. The residuals from the constant-ζ (linear ξ) fit also show no evidence for logarithmic growth, restoring confidence that numerical simulations can be simply extrapolated from the Peccei-Quinn symmetry-breaking scale to the QCD scale. Reanalysis of previous work on the axion number density suggests that recent estimates of the axion dark matter mass in the postinflationary symmetry-breaking scenario we study should be increased by about 50%.

4.
Phys Rev Lett ; 120(7): 071301, 2018 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-29542948

RESUMO

A model for the acoustic production of gravitational waves at a first-order phase transition is presented. The source of gravitational radiation is the sound waves generated by the explosive growth of bubbles of the stable phase. The model assumes that the sound waves are linear and that their power spectrum is determined by the characteristic form of the sound shell around the expanding bubble. The predicted power spectrum has two length scales, the average bubble separation and the sound shell width when the bubbles collide. The peak of the power spectrum is at wave numbers set by the sound shell width. For a higher wave number k, the power spectrum decreases to k^{-3}. At wave numbers below the inverse bubble separation, the power spectrum goes to k^{5}. For bubble wall speeds near the speed of sound where these two length scales are distinguished, there is an intermediate k^{1} power law. The detailed dependence of the power spectrum on the wall speed and the other parameters of the phase transition raises the possibility of their constraint or measurement at a future space-based gravitational wave observatory such as LISA.

5.
Phys Rev Lett ; 117(25): 251601, 2016 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-28036207

RESUMO

We study the properties of classical vortex solutions in a non-Abelian gauge theory. A system of two adjoint Higgs fields breaks the SU(2) gauge symmetry to Z_{2}, producing 't Hooft-Polyakov monopoles trapped on cosmic strings, termed beads; there are two charges of monopole and two degenerate string solutions. The strings break an accidental discrete Z_{2} symmetry of the theory, explaining the degeneracy of the ground state. Further symmetries of the model, not previously appreciated, emerge when the masses of the two adjoint Higgs fields are degenerate. The breaking of the enlarged discrete symmetry gives rise to additional string solutions and splits the monopoles into four types of "semipole": kink solutions that interpolate between the string solutions, classified by a complex gauge-invariant magnetic flux and a Z_{4} charge. At special values of the Higgs self-couplings, the accidental symmetry broken by the string is continuous, giving rise to supercurrents on the strings. The SU(2) theory can be embedded in a wide class of grand unified theories (GUTs), including SO(10). We argue that semipoles and supercurrents are generic on GUT strings.

6.
Phys Rev Lett ; 112(4): 041301, 2014 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-24580433

RESUMO

We report on the first three-dimensional numerical simulations of first-order phase transitions in the early Universe to include the cosmic fluid as well as the scalar field order parameter. We calculate the gravitational wave (GW) spectrum resulting from the nucleation, expansion, and collision of bubbles of the low-temperature phase, for phase transition strengths and bubble wall velocities covering many cases of interest. We find that the compression waves in the fluid continue to be a source of GWs long after the bubbles have merged, a new effect not taken properly into account in previous modeling of the GW source. For a wide range of models, the main source of the GWs produced by a phase transition is, therefore, the sound the bubbles make.

7.
Phys Rev Lett ; 112(17): 171301, 2014 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-24836231

RESUMO

We show that the B-mode polarization signal detected at low multipoles by BICEP2 cannot be entirely due to topological defects. This would be incompatible with the high-multipole B-mode polarization data and also with existing temperature anisotropy data. Adding cosmic strings to a model with tensors, we find that B modes on their own provide a comparable limit on the defects to that already coming from Planck satellite temperature data. We note that strings at this limit give a modest improvement to the best fit of the B-mode data, at a somewhat lower tensor-to-scalar ratio of r ≃ 0.15.

8.
Phys Rev Lett ; 110(10): 101302, 2013 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-23521248

RESUMO

We demonstrate that any scaling source in the radiation era produces a background of gravitational waves with an exact scale-invariant power spectrum. Cosmic defects, created after a phase transition in the early universe, are such a scaling source. We emphasize that the result is independent of the topology of the cosmic defects, the order of phase transition, and the nature of the symmetry broken, global or gauged. As an example, using large-scale numerical simulations, we calculate the scale-invariant gravitational wave power spectrum generated by the dynamics of a global O(N) scalar theory. The result approaches the large N theoretical prediction as N(-2), albeit with a large coefficient. The signal from global cosmic strings is O(100) times larger than the large N prediction.

9.
Phys Rev Lett ; 106(8): 081602, 2011 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-21405564

RESUMO

We give the first construction of covariant coherent closed string states, which may be identified with fundamental cosmic strings. We outline the requirements for a string state to describe a cosmic string, and provide an explicit and simple map that relates three different descriptions: classical strings, light cone gauge quantum states, and covariant vertex operators. The resulting coherent state vertex operators have a classical interpretation and are in one-to-one correspondence with arbitrary classical closed string loops.

10.
Phys Rev Lett ; 100(2): 021301, 2008 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-18232848

RESUMO

We perform a multiparameter likelihood analysis to compare measurements of the cosmic microwave background (CMB) power spectra with predictions from models involving cosmic strings. Adding strings to the standard case of a primordial spectrum with power-law tilt ns, we find a 2sigma detection of strings: f10=0.11+/-0.05, where f10 is the fractional contribution made by strings in the temperature power spectrum (at l=10). CMB data give moderate preference to the model ns=1 with cosmic strings over the standard zero-strings model with variable tilt. When additional non-CMB data are incorporated, the two models become on a par. With variable ns and these extra data, we find that f10<0.11, which corresponds to Gmicro<0.7x10(-6) (where micro is the string tension and G is the gravitational constant).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA