Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Ecol Lett ; 24(9): 1762-1775, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34157796

RESUMO

Community composition is a primary determinant of how biodiversity change influences ecosystem functioning and, therefore, the relationship between biodiversity and ecosystem functioning (BEF). We examine the consequences of community composition across six structurally realistic plant community models. We find that a positive correlation between species' functioning in monoculture versus their dominance in mixture with regard to a specific function (the "function-dominance correlation") generates a positive relationship between realised diversity and ecosystem functioning across species richness treatments. However, because realised diversity declines when few species dominate, a positive function-dominance correlation generates a negative relationship between realised diversity and ecosystem functioning within species richness treatments. Removing seed inflow strengthens the link between the function-dominance correlation and BEF relationships across species richness treatments but weakens it within them. These results suggest that changes in species' identities in a local species pool may more strongly affect ecosystem functioning than changes in species richness.


Assuntos
Biodiversidade , Ecossistema
2.
Glob Chang Biol ; 25(3): 763-774, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30449061

RESUMO

Concern about human modification of Earth's ecosystems has recently motivated ecologists to address how global change drivers will impact the simultaneous provisioning of multiple functions, termed ecosystem multifunctionality (EMF). However, metrics of EMF have often been applied in global change studies with little consideration of the information they provide beyond single functions, or how and why EMF may respond to global change drivers. Here, we critically review the current state of this rapidly expanding field and provide a conceptual framework to guide the effective incorporation of EMF in global change research. In particular, we emphasize the need for a priori identification and explicit testing of the biotic and abiotic mechanisms through which global change drivers impact EMF, as well as assessing correlations among multiple single functions because these patterns underlie shifts in EMF. While the role of biodiversity in mediating global change effects on EMF has justifiably received much attention, empirical support for effects via other biotic and physicochemical mechanisms are also needed. Studies also frequently stated the importance of measuring EMF responses to global change drivers to understand the potential consequences for multiple ecosystem services, but explicit links between measured functions and ecosystem services were missing from many such studies. While there is clear potential for EMF to provide novel insights to global change research, predictive understanding will be greatly improved by insuring future research is strongly hypothesis-driven, is designed to explicitly test multiple abiotic and biotic mechanisms, and assesses how single functions and their covariation drive emergent EMF responses to global change drivers.


Assuntos
Ecossistema , Pesquisa/tendências , Biodiversidade
3.
Conserv Biol ; 33(5): 1187-1192, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30868645

RESUMO

Human activities are accelerating global biodiversity change and have resulted in severely threatened ecosystem services. A large proportion of terrestrial biodiversity is harbored by soil, but soil biodiversity has been omitted from many global biodiversity assessments and conservation actions, and understanding of global patterns of soil biodiversity remains limited. In particular, the extent to which hotspots and coldspots of aboveground and soil biodiversity overlap is not clear. We examined global patterns of these overlaps by mapping indices of aboveground (mammals, birds, amphibians, vascular plants) and soil (bacteria, fungi, macrofauna) biodiversity that we created using previously published data on species richness. Areas of mismatch between aboveground and soil biodiversity covered 27% of Earth's terrestrial surface. The temperate broadleaf and mixed forests biome had the highest proportion of grid cells with high aboveground biodiversity but low soil biodiversity, whereas the boreal and tundra biomes had intermediate soil biodiversity but low aboveground biodiversity. While more data on soil biodiversity are needed, both to cover geographic gaps and to include additional taxa, our results suggest that protecting aboveground biodiversity may not sufficiently reduce threats to soil biodiversity. Given the functional importance of soil biodiversity and the role of soils in human well-being, soil biodiversity should be considered further in policy agendas and conservation actions by adapting management practices to sustain soil biodiversity and considering soil biodiversity when designing protected areas.


Disparidades Mundiales entre la Biodiversidad Sobre y Bajo el Suelo Resumen Las actividades humanas están acelerando el cambio en la biodiversidad mundial y han tenido como resultado unos servicios ambientales severamente amenazados. Una gran proporción de la biodiversidad terrestre está albergada en el suelo, pero la biodiversidad de este ha sido omitida de varias evaluaciones mundiales de biodiversidad y de las acciones de conservación, además de que el entendimiento de los patrones mundiales de la biodiversidad del suelo permanece limitado; particularmente, la extensión del traslape entre los puntos fríos y calientes de biodiversidad sobre y bajo suelo no está clara. Examinamos los patrones mundiales de estos traslapes mapeando los índices de biodiversidad sobre el suelo (mamíferos, aves, anfibios y plantas vasculares) y bajo el suelo (bacterias, hongos y macrofauna) que creamos con datos previamente publicados de la riqueza de especies. Las áreas de disparidad entre la biodiversidad sobre y bajo el suelo cubrieron el 27% de la superficie terrestre del planeta. El bioma de los bosques templados de plantas frondosas y mixtas tuvo la proporción más alta de celdas de cuadrícula con una biodiversidad alta sobre el suelo, pero baja para en el subsuelo, mientras que los biomas boreales y de la tundra tuvieron una biodiversidad intermedia bajo el suelo, pero baja para el sobre suelo. Aunque se requieren más datos sobre la biodiversidad del suelo, tanto para cubrir los vacíos geográficos como para incluir a taxones adiciones, nuestros resultados sugieren que la protección a la biodiversidad sobre el suelo puede no reducir suficientemente las amenazas para la biodiversidad del suelo. Dada la importancia funcional de la biodiversidad del suelo y el papel de los suelos en el bienestar humano, se debería considerar a la biodiversidad del suelo mucho más en las agendas políticas y en las acciones de conservación, adaptando a las prácticas de manejo para que mantengan a la biodiversidad del suelo y la consideren cuando designen áreas protegidas.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Animais , Biodiversidade , Florestas , Humanos , Solo
4.
Ecology ; 97(7): 1635-1642, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27859157

RESUMO

Smaller invertebrate body mass is claimed to be a universal response to climate warming. It has been suggested that body mass could also predict consumer influences on ecosystem processes in a warmer world because generalized rules describe relationships between body mass, temperature, and metabolism. However, the utility of this suggestion remains tenuous because the nutritional and physiological constraints underlying relationships between body mass and consumer-driven processes are highly variable in realistic settings. Here we test, using a generalist invertebrate detritivore, fungi, and leaf litter, the limitations imposed by nutrition on growth and decomposition in response to global change. Strong competition for fungal food resources limited invertebrate growth and reduced body mass plasticity in response to warming and nitrogen pollution scenarios. When competition was relaxed by experimentally reducing invertebrate density, consumption of fungi promoted rapid invertebrate growth and enhanced invertebrate sensitivity to the global change scenarios, especially warming and nitrogen pollution together. Accordingly, fungi promoted invertebrate body mass plasticity and mediated consumer effects on decomposition causing the relative influence of warming and nitrogen pollution to vary across trophic levels. An important implication is that managing nitrogen pollution may alter which trophic level is most sensitive to warming.


Assuntos
Mudança Climática , Ecossistema , Aquecimento Global , Invertebrados/fisiologia , Nitrogênio/análise , Animais , Clima , Folhas de Planta , Densidade Demográfica
5.
Glob Chang Biol ; 21(12): 4642-50, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25953075

RESUMO

Elevated atmospheric CO2 generally enhances plant growth, but the magnitude of the effects depend, in part, on nutrient availability and plant photosynthetic pathway. Due to their pivotal role in nutrient cycling, changes in abundance of detritivores could influence the effects of elevated atmospheric CO2 on essential ecosystem processes, such as decomposition and primary production. We conducted a field survey and a microcosm experiment to test the influence of changes in detritus-based food chains on litter mass loss and plant growth response to elevated atmospheric CO2 using two wetland plants: a C3 sedge (Scirpus olneyi) and a C4 grass (Spartina patens). Our field study revealed that organism's sensitivity to climate increased with trophic level resulting in strong inter-annual variation in detritus-based food chain length. Our microcosm experiment demonstrated that increased detritivore abundance could not only enhance decomposition rates, but also enhance plant growth of S. olneyi in elevated atmospheric CO2 conditions. In contrast, we found no evidence that changes in the detritus-based food chains influenced the growth of S. patens. Considered together, these results emphasize the importance of approaches that unite traditionally subdivided food web compartments and plant physiological processes to understand inter-annual variation in plant production response to elevated atmospheric CO2.


Assuntos
Dióxido de Carbono/metabolismo , Clima , Cyperaceae/crescimento & desenvolvimento , Cadeia Alimentar , Poaceae/crescimento & desenvolvimento , Áreas Alagadas , Animais , Carbono/metabolismo , Maryland , Aranhas/fisiologia
6.
Glob Chang Biol ; 20(12): 3780-9, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25099691

RESUMO

Intraspecific variation in genotypically determined traits can influence ecosystem processes. Therefore, the impact of climate change on ecosystems may depend, in part, on the distribution of plant genotypes. Here we experimentally assess effects of climate warming and excess nitrogen supply on litter decomposition using 12 genotypes of a cosmopolitan foundation species collected across a 2100 km latitudinal gradient and grown in a common garden. Genotypically determined litter-chemistry traits varied substantially within and among geographic regions, which strongly affected decomposition and the magnitude of warming effects, as warming accelerated litter mass loss of high-nutrient, but not low-nutrient, genotypes. Although increased nitrogen supply alone had no effect on decomposition, it strongly accelerated litter mass loss of all genotypes when combined with warming. Rates of microbial respiration associated with the leaf litter showed nearly identical responses as litter mass loss. These results highlight the importance of interactive effects of environmental factors and suggest that loss or gain of genetic variation associated with key phenotypic traits can buffer, or exacerbate, the impact of global change on ecosystem process rates in the future.


Assuntos
Mudança Climática , Ecossistema , Variação Genética , Modelos Biológicos , Nitrogênio/análise , Poaceae/genética , Microbiologia do Solo , Solo/química , Genótipo , Consumo de Oxigênio/fisiologia , Folhas de Planta/metabolismo , Poaceae/crescimento & desenvolvimento
7.
Oecologia ; 173(4): 1169-78, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23836092

RESUMO

Global warming and excess nitrogen deposition can exert strong impacts on aquatic populations, communities, and ecosystems. However, experimental data to establish clear cause-and-effect relationships in naturally complex field conditions are scarce in aquatic environments. Here, we describe the design and performance of a unique outdoor enclosure facility used to simulate warming, increased nitrogen supply, and both factors combined in a littoral freshwater wetland dominated by common reed, Phragmites australis. The experimental system effectively simulated a 2.8 °C climate warming scenario over an extended period, capturing the natural temperature variations in the wetland at diel and seasonal scales with only small deviations. Excess nitrogen supply enhanced nitrate concentrations especially in winter when it was associated with increased concentration of ammonium and dissolved organic carbon. Nitrogen also reduced dissolved oxygen concentrations, particularly in the summer. Importantly, by stimulating biological activity, warming enhanced the nitrogen uptake capacity of the wetland during the winter, emphasizing the need for multifactorial global change experiments that examine both warming and nitrogen loading in concert. Establishing similar experiments across broad environmental gradients holds great potential to provide robust assessments of the impacts of climate change on shallow aquatic ecosystems.


Assuntos
Aquecimento Global , Nitrogênio/análise , Poaceae , Áreas Alagadas , Água Doce/química , Estações do Ano , Temperatura
8.
Ecol Evol ; 13(4): e10022, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37113518

RESUMO

Phenology is the study of timing of periodic activities in biological life cycles. It describes an inherent component of ecosystem dynamics, and shifts in biological activity have been increasingly recognized as an indicator of global change. Although phenology is mainly studied above the ground, major ecosystem processes, such as decomposition, mineralization, and nutrient cycling, are soil-dependent. Therefore, the phenology of soil organisms is a crucial, but understudied, aspect of terrestrial ecosystem functioning. We performed a systematic review of 96 studies, which reported 228 phenological observations, to evaluate the current knowledge of soil microbial and animal phenology. Despite the increasing number of soil phenology reports, most research is still concentrated in a few countries (centered in the Northern Hemisphere) and taxa (microbiota), with significant gaps in the most diverse regions of the globe (i.e., tropics) and important taxa (e.g., ants, termites, and earthworms). Moreover, biotic predictors (e.g., biodiversity and species interactions) have rarely been considered as possible drivers of soil organisms' phenology. We present recommendations for future soil phenology research based on an evaluation of the reported geographical, taxonomic, and methodologic trends that bias current soil phenology research. First, we highlight papers that depict good soil phenology practice, either regarding the research foci, methodological approaches, or results reporting. Then, we discuss the gaps, challenges, and opportunities for future research. Overall, we advocate that focusing both on highly diverse ecosystems and key soil organisms, while testing for the direct and indirect effects of biodiversity loss and climatic stressors, could increase our knowledge of soil functioning and enhance the accuracy of predictions depicting the effects of global change on terrestrial ecosystem functioning as a whole.

9.
Philos Trans R Soc Lond B Biol Sci ; 378(1892): 20220366, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-37899014

RESUMO

Artificial light at night (ALAN) is increasing worldwide, but its effects on the soil system have not yet been investigated. We tested the influence of experimental manipulation of ALAN on two taxa of soil communities (microorganisms and soil nematodes) and three aspects of soil functioning (soil basal respiration, soil microbial biomass and carbon use efficiency) over four and a half months in a highly controlled Ecotron facility. We show that during peak plant biomass, increasing ALAN reduced plant biomass and was also associated with decreased soil water content. This further reduced soil respiration under high ALAN at peak plant biomass, but microbial communities maintained stable biomass across different levels of ALAN and times, demonstrating higher microbial carbon use efficiency under high ALAN. While ALAN did not affect microbial community structure, the abundance of plant-feeding nematodes increased and there was homogenization of nematode communities under higher levels of ALAN, indicating that soil communities may be more vulnerable to additional disturbances at high ALAN. In summary, the effects of ALAN reach into the soil system by altering soil communities and ecosystem functions, and these effects are mediated by changes in plant productivity and soil water content at peak plant biomass. This article is part of the theme issue 'Light pollution in complex ecological systems'.


Assuntos
Microbiota , Nematoides , Animais , Ecossistema , Poluição Luminosa , Solo/química , Biomassa , Água , Plantas , Carbono , Microbiologia do Solo
10.
Philos Trans R Soc Lond B Biol Sci ; 378(1892): 20220358, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-37899022

RESUMO

Artificial light at night (ALAN) affects many areas of the world and is increasing globally. To date, there has been limited and inconsistent evidence regarding the consequences of ALAN for plant communities, as well as for the fitness of their constituent species. ALAN could be beneficial for plants as they need light as energy source, but they also need darkness for regeneration and growth. We created model communities composed of 16 plant species sown, exposed to a gradient of ALAN ranging from 'moonlight only' to conditions like situations typically found directly underneath a streetlamp. We measured plant community composition and its production (biomass), as well as functional traits of three plant species from different functional groups (grasses, herbs, legumes) in two separate harvests. We found that biomass was reduced by 33% in the highest ALAN treatment compared to the control, Shannon diversity decreased by 43% and evenness by 34% in the first harvest. Some species failed to establish in the second harvest. Specific leaf area, leaf dry matter content and leaf hairiness responded to ALAN. These responses suggest that plant communities will be sensitive to increasing ALAN, and they flag a need for plant conservation activities that consider impending ALAN scenarios. This article is part of the theme issue 'Light pollution in complex ecological systems'.


Assuntos
Pradaria , Poluição Luminosa , Ecossistema , Biomassa , Plantas , Luz
11.
Natl Sci Rev ; 10(7): nwad109, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37575691

RESUMO

Ever-growing human population and nutritional demands, supply chain disruptions, and advancing climate change have led to the realization that changes in diversity and system performance are intimately linked. Moreover, diversity and system performance depend on heterogeneity. Mitigating changes in system performance and promoting sustainable living conditions requires transformative decisions. Here, we introduce the heterogeneity-diversity-system performance (HDP) nexus as the conceptual basis upon which to formulate transformative decisions. We suggest that managing the heterogeneity of systems will best allow diversity to provide multiple benefits to people. Based on ecological theory, we pose that the HDP nexus is broadly applicable across systems, disciplines, and sectors, and should thus be considered in future decision making as a way to have a more sustainable global future.

12.
Curr Biol ; 33(20): 4538-4547.e5, 2023 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-37757832

RESUMO

Human activities cause substantial changes in biodiversity.1,2 Despite ongoing concern about the implications of invertebrate decline,3,4,5,6,7 few empirical studies have examined the ecosystem consequences of invertebrate biomass loss. Here, we test the responses of six ecosystem services informed by 30 above- and belowground ecosystem variables to three levels of aboveground (i.e., vegetation associated) invertebrate community biomass (100%, 36%, and 0% of ambient biomass) in experimental grassland mesocosms in a controlled Ecotron facility. In line with recent reports on invertebrate biomass loss over the last decade, our 36% biomass treatment also represented a decrease in invertebrate abundance (-70%) and richness (-44%). Moreover, we simulated the pronounced change in invertebrate biomass and turnover in community composition across the season. We found that the loss of invertebrate biomass decreases ecosystem multifunctionality, including two critical ecosystem services, aboveground pest control and belowground decomposition, while harvested plant biomass increases, likely because less energy was channeled up the food chain. Moreover, communities and ecosystem functions become decoupled with a lower biomass of invertebrates. Our study shows that invertebrate loss threatens the integrity of grasslands by decoupling ecosystem processes and decreasing ecosystem-service supply.


Assuntos
Ecossistema , Invertebrados , Animais , Humanos , Biomassa , Biodiversidade , Plantas , Solo
13.
Philos Trans R Soc Lond B Biol Sci ; 378(1892): 20220359, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-37899019

RESUMO

Artificial light at night (ALAN) is predicted to have far-reaching consequences for natural ecosystems given its influence on organismal physiology and behaviour, species interactions and community composition. Movement and predation are fundamental ecological processes that are of critical importance to ecosystem functioning. The natural movements and foraging behaviours of nocturnal invertebrates may be particularly sensitive to the presence of ALAN. However, we still lack evidence of how these processes respond to ALAN within a community context. We assembled insect communities to quantify their movement activity and predation rates during simulated Moon cycles across a gradient of diffuse night-time illuminance including the full range of observed skyglow intensities. Using radio frequency identification, we tracked the movements of insects within a fragmented grassland Ecotron experiment. We additionally quantified predation rates using prey dummies. Our results reveal that even low-intensity skyglow causes a temporal shift in movement activity from day to night, and a spatial shift towards open habitats at night. Changes in movement activity are associated with indirect shifts in predation rates. Spatio-temporal shifts in movement and predation have important implications for ecological networks and ecosystem functioning, highlighting the disruptive potential of ALAN for global biodiversity and the provision of ecosystem services. This article is part of the theme issue 'Light pollution in complex ecological systems'.


Assuntos
Ecossistema , Poluição Luminosa , Animais , Comportamento Predatório , Invertebrados , Luz , Insetos
14.
J Anim Ecol ; 81(6): 1143-1145, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23106912

RESUMO

Does stress, defined as a reduction in growth by external constraints, modify biodiversity effects on ecosystem functioning? That is, are diversity effects stronger under stressful, as opposed to favourable conditions? The study by Fugère et al. (2012) in this issue borrows the stress-gradient hypothesis from plant ecology to explore this issue in an aquatic detritus-detritivore system. Although they find weak support for their hypothesis, the study opens the door for future experimental and theoretical investigations into the role of stress in modifying the relationship between the diversity of animal communities and ecosystem processes.


Assuntos
Anfípodes/fisiologia , Herbivoria , Insetos/fisiologia , Magnoliopsida/metabolismo , Rios , Animais
15.
J Anim Ecol ; 81(6): 1146-1153, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22676625

RESUMO

1. Primary production and decomposition, two fundamental processes determining the functioning of ecosystems, may be sensitive to changes in biodiversity and food web interactions. 2. The impacts of food web interactions on ecosystem functioning are generally quantified by experimentally decoupling these linked processes and examining either primary production-based (green) or decomposition-based (brown) food webs in isolation. This decoupling may strongly limit our ability to assess the importance of food web interactions on ecosystem processes. 3. To evaluate how consumer trophic diversity mediates predator effects on ecosystem functioning, we conducted a mesocosm experiment and a field study using an assemblage of invertebrates that naturally co-occur on North Atlantic coastal saltmarshes. We measured the indirect impact of predation on primary production and leaf decomposition as a result of prey communities composed of herbivores alone, detritivores alone or both prey in combination. 4. We find that primary consumers can influence ecosystem process rates not only within, but also across green and brown sub-webs. Moreover, by feeding on a functionally diverse consumer assemblage comprised of both herbivores and detritivores, generalist predators can diffuse consumer effects on decomposition, primary production and feedbacks between the two processes. 5. These results indicate that maintaining functional diversity among primary consumers can alter the consequences of traditional trophic cascades, and they emphasize the role of the detritus-based sub-web when seeking key biotic drivers of plant production. Clearly, traditional compartmentalization of empirical food webs can limit our ability to predict the influence of food web interactions on ecosystem functioning.


Assuntos
Ecossistema , Hemípteros/fisiologia , Isópodes/fisiologia , Poaceae/metabolismo , Aranhas/fisiologia , Animais , Biodiversidade , Cadeia Alimentar , Herbivoria , Maryland
16.
Curr Biol ; 31(20): R1390-R1392, 2021 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-34699804

RESUMO

Systematic, long-term monitoring provides crucial evidence regarding the vulnerability of biodiversity to environmental change. New research shows that trends in taxonomic diversity do not necessarily match trends in functional diversity. Interpreting the implications of different kinds of diversity change for ecosystem functioning remains a key priority.


Assuntos
Biodiversidade , Ecossistema
17.
Curr Biol ; 31(19): R1214-R1218, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34637734

RESUMO

Biodiversity is changing at alarming rates as a result of human activities; yet biodiversity is the basis for ecosystem services upon which humans depend. Most of what we know about past, current, and projected biodiversity trends, as well as the ecosystem consequences of biodiversity change, is based on charismatic species, mostly plants and vertebrates. But 31 out of 32 animal phyla are invertebrates, representing roughly 75% of all described species on Earth. Evolution has not only produced an astonishing taxonomic diversity of invertebrates, but also an unparalleled morphological and functional diversity that has allowed invertebrates to populate marine, terrestrial, and freshwater realms. Invertebrates are responsible for many ecosystem services and disservices, which makes their appreciation and conservation a top priority of future research and policy.


Assuntos
Ecossistema , Invertebrados , Animais , Biodiversidade , Conservação dos Recursos Naturais , Água Doce , Vertebrados
18.
Ecol Evol ; 11(21): 15174-15190, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34765169

RESUMO

Across the globe, ecological communities are confronted with multiple global environmental change drivers, and they are responding in complex ways ranging from behavioral, physiological, and morphological changes within populations to changes in community composition and food web structure with consequences for ecosystem functioning. A better understanding of global change-induced alterations of multitrophic biodiversity and the ecosystem-level responses in terrestrial ecosystems requires holistic and integrative experimental approaches to manipulate and study complex communities and processes above and below the ground. We argue that mesocosm experiments fill a critical gap in this context, especially when based on ecological theory and coupled with microcosm experiments, field experiments, and observational studies of macroecological patterns. We describe the design and specifications of a novel terrestrial mesocosm facility, the iDiv Ecotron. It was developed to allow the setup and maintenance of complex communities and the manipulation of several abiotic factors in a near-natural way, while simultaneously measuring multiple ecosystem functions. To demonstrate the capabilities of the facility, we provide a case study. This study shows that changes in aboveground multitrophic interactions caused by decreased predator densities can have cascading effects on the composition of belowground communities. The iDiv Ecotrons technical features, which allow for the assembly of an endless spectrum of ecosystem components, create the opportunity for collaboration among researchers with an equally broad spectrum of expertise. In the last part, we outline some of such components that will be implemented in future ecological experiments to be realized in the iDiv Ecotron.

19.
Soil Org ; 92(2): 121-127, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32879638

RESUMO

Following our participation in the first World Biodiversity Forum in Davos, Switzerland, we provide a summary of the main themes of the conference, as well as an overview of the session that was focused on soil biodiversity. One of the main themes of the conference was the valuation of biodiversity and what contributes to the value of biodiversity. In this article we explore whether we should move away from the notion that we can only 'sell' soil biodiversity based on the function and services it provides, and rather shift towards valuing soil biodiversity based on its intrinsic value and our relationship with it.

20.
Nat Ecol Evol ; 4(3): 393-405, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32094542

RESUMO

The continuing loss of global biodiversity has raised questions about the risk that species extinctions pose for the functioning of natural ecosystems and the services that they provide for human wellbeing. There is consensus that, on single trophic levels, biodiversity sustains functions; however, to understand the full range of biodiversity effects, a holistic and multitrophic perspective is needed. Here, we apply methods from ecosystem ecology that quantify the structure and dynamics of the trophic network using ecosystem energetics to data from a large grassland biodiversity experiment. We show that higher plant diversity leads to more energy stored, greater energy flow and higher community-energy-use efficiency across the entire trophic network. These effects of biodiversity on energy dynamics were not restricted to only plants but were also expressed by other trophic groups and, to a similar degree, in aboveground and belowground parts of the ecosystem, even though plants are by far the dominating group in the system. The positive effects of biodiversity on one trophic level were not counteracted by the negative effects on adjacent levels. Trophic levels jointly increased the performance of the community, indicating ecosystem-wide multitrophic complementarity, which is potentially an important prerequisite for the provisioning of ecosystem services.


Assuntos
Ecossistema , Pradaria , Biodiversidade , Ecologia , Humanos , Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA