Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Diabetologia ; 64(11): 2432-2444, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34338806

RESUMO

AIMS/HYPOTHESIS: Accurate prediction of disease progression in individuals with pre-symptomatic type 1 diabetes has potential to prevent ketoacidosis and accelerate development of disease-modifying therapies. Current tools for predicting risk require multiple blood samples taken during an OGTT. Our aim was to develop and validate a simpler tool based on a single blood draw. METHODS: Models to predict disease progression using a single OGTT time point (0, 30, 60, 90 or 120 min) were developed using TrialNet data collected from relatives with type 1 diabetes and validated in independent populations at high genetic risk of type 1 diabetes (TrialNet, Diabetes Prevention Trial-Type 1, The Environmental Determinants of Diabetes in the Young [1]) and in a general population of Bavarian children who participated in Fr1da. RESULTS: Cox proportional hazards models combining plasma glucose, C-peptide, sex, age, BMI, HbA1c and insulinoma antigen-2 autoantibody status predicted disease progression in all populations. In TrialNet, the AUC for receiver operating characteristic curves for models named M60, M90 and M120, based on sampling at 60, 90 and 120 min, was 0.760, 0.761 and 0.745, respectively. These were not significantly different from the AUC of 0.760 for the gold standard Diabetes Prevention Trial Risk Score, which requires five OGTT blood samples. In TEDDY, where only 120 min blood sampling had been performed, the M120 AUC was 0.865. In Fr1da, the M120 AUC of 0.742 was significantly greater than the M60 AUC of 0.615. CONCLUSIONS/INTERPRETATION: Prediction models based on a single OGTT blood draw accurately predict disease progression from stage 1 or 2 to stage 3 type 1 diabetes. The operational simplicity of M120, its validity across different at-risk populations and the requirement for 120 min sampling to stage type 1 diabetes suggest M120 could be readily applied to decrease the cost and complexity of risk stratification.


Assuntos
Doenças Assintomáticas , Autoanticorpos/sangue , Diabetes Mellitus Tipo 1/diagnóstico , Anticorpos Anti-Insulina/sangue , Proteínas Tirosina Fosfatases Classe 8 Semelhantes a Receptores/imunologia , Transportador 8 de Zinco/imunologia , Adolescente , Área Sob a Curva , Glicemia/metabolismo , Índice de Massa Corporal , Peptídeo C/sangue , Criança , Pré-Escolar , Diabetes Mellitus Tipo 1/sangue , Progressão da Doença , Feminino , Teste de Tolerância a Glucose , Hemoglobinas Glicadas/metabolismo , Humanos , Masculino , Modelos de Riscos Proporcionais , Curva ROC
2.
Diabetologia ; 64(5): 1079-1092, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33515070

RESUMO

AIMS/HYPOTHESIS: Oral administration of antigen can induce immunological tolerance. Insulin is a key autoantigen in childhood type 1 diabetes. Here, oral insulin was given as antigen-specific immunotherapy before the onset of autoimmunity in children from age 6 months to assess its safety and immune response actions on immunity and the gut microbiome. METHODS: A phase I/II randomised controlled trial was performed in a single clinical study centre in Germany. Participants were 44 islet autoantibody-negative children aged 6 months to 2.99 years who had a first-degree relative with type 1 diabetes and a susceptible HLA DR4-DQ8-containing genotype. Children were randomised 1:1 to daily oral insulin (7.5 mg with dose escalation to 67.5 mg) or placebo for 12 months using a web-based computer system. The primary outcome was immune efficacy pre-specified as induction of antibody or T cell responses to insulin and measured in a central treatment-blinded laboratory. RESULTS: Randomisation was performed in 44 children. One child in the placebo group was withdrawn after the first study visit and data from 22 insulin-treated and 21 placebo-treated children were analysed. Oral insulin was well tolerated with no changes in metabolic variables. Immune responses to insulin were observed in children who received both insulin (54.5%) and placebo (66.7%), and the trial did not demonstrate an effect on its primary outcome (p = 0.54). In exploratory analyses, there was preliminary evidence that the immune response and gut microbiome were modified by the INS genotype Among children with the type 1 diabetes-susceptible INS genotype (n = 22), antibody responses to insulin were more frequent in insulin-treated (72.7%) as compared with placebo-treated children (18.2%; p = 0.03). T cell responses to insulin were modified by treatment-independent inflammatory episodes. CONCLUSIONS/INTERPRETATION: The study demonstrated that oral insulin immunotherapy in young genetically at-risk children was safe, but was not associated with an immune response as predefined in the trial primary outcome. Exploratory analyses suggested that antibody responses to oral insulin may occur in children with a susceptible INS genotype, and that inflammatory episodes may promote the activation of insulin-responsive T cells. TRIAL REGISTRATION: Clinicaltrials.gov NCT02547519 FUNDING: The main funding source was the German Center for Diabetes Research (DZD e.V.).


Assuntos
Diabetes Mellitus Tipo 1/prevenção & controle , Imunoterapia/métodos , Insulina/administração & dosagem , Administração Oral , Formação de Anticorpos/efeitos dos fármacos , Formação de Anticorpos/genética , Autoanticorpos/efeitos dos fármacos , Autoanticorpos/genética , Autoimunidade/efeitos dos fármacos , Pré-Escolar , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/imunologia , Família , Feminino , Alemanha , Humanos , Lactente , Insulina/imunologia , Masculino , Prevenção Primária/métodos
3.
J Med Genet ; 56(9): 602-605, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30287597

RESUMO

BACKGROUND: Progression time from islet autoimmunity to clinical type 1 diabetes is highly variable and the extent that genetic factors contribute is unknown. METHODS: In 341 islet autoantibody-positive children with the human leucocyte antigen (HLA) DR3/DR4-DQ8 or the HLA DR4-DQ8/DR4-DQ8 genotype from the prospective TEDDY (The Environmental Determinants of Diabetes in the Young) study, we investigated whether a genetic risk score that had previously been shown to predict islet autoimmunity is also associated with disease progression. RESULTS: Islet autoantibody-positive children with a genetic risk score in the lowest quartile had a slower progression from single to multiple autoantibodies (p=0.018), from single autoantibodies to diabetes (p=0.004), and by trend from multiple islet autoantibodies to diabetes (p=0.06). In a Cox proportional hazards analysis, faster progression was associated with an increased genetic risk score independently of HLA genotype (HR for progression from multiple autoantibodies to type 1 diabetes, 1.27, 95% CI 1.02 to 1.58 per unit increase), an earlier age of islet autoantibody development (HR, 0.68, 95% CI 0.58 to 0.81 per year increase in age) and female sex (HR, 1.94, 95% CI 1.28 to 2.93). CONCLUSIONS: Genetic risk scores may be used to identify islet autoantibody-positive children with high-risk HLA genotypes who have a slow rate of progression to subsequent stages of autoimmunity and type 1 diabetes.


Assuntos
Autoimunidade , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/imunologia , Predisposição Genética para Doença , Ilhotas Pancreáticas/imunologia , Ilhotas Pancreáticas/metabolismo , Autoanticorpos/imunologia , Criança , Pré-Escolar , Diabetes Mellitus Tipo 1/patologia , Progressão da Doença , Feminino , Humanos , Lactente , Ilhotas Pancreáticas/patologia , Masculino , Estudos Prospectivos , Medição de Risco , Fatores de Risco
4.
JAMA ; 323(4): 339-351, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31990315

RESUMO

IMPORTANCE: Public health screening for type 1 diabetes in its presymptomatic stages may reduce disease severity and burden on a population level. OBJECTIVE: To determine the prevalence of presymptomatic type 1 diabetes in children participating in a public health screening program for islet autoantibodies and the risk for progression to clinical diabetes. DESIGN, SETTING, AND PARTICIPANTS: Screening for islet autoantibodies was offered to children aged 1.75 to 5.99 years in Bavaria, Germany, between 2015 and 2019 by primary care pediatricians during well-baby visits. Families of children with multiple islet autoantibodies (presymptomatic type 1 diabetes) were invited to participate in a program of diabetes education, metabolic staging, assessment of psychological stress associated with diagnosis, and prospective follow-up for progression to clinical diabetes until July 31, 2019. EXPOSURES: Measurement of islet autoantibodies. MAIN OUTCOMES AND MEASURES: The primary outcome was presymptomatic type 1 diabetes, defined by 2 or more islet autoantibodies, with categorization into stages 1 (normoglycemia), 2 (dysglycemia), or 3 (clinical) type 1 diabetes. Secondary outcomes were the frequency of diabetic ketoacidosis and parental psychological stress, assessed by the Patient Health Questionnaire-9 (range, 0-27; higher scores indicate worse depression; ≤4 indicates no to minimal depression; >20 indicates severe depression). RESULTS: Of 90 632 children screened (median [interquartile range {IQR}] age, 3.1 [2.1-4.2] years; 48.5% girls), 280 (0.31%; 95% CI, 0.27-0.35) had presymptomatic type 1 diabetes, including 196 (0.22%) with stage 1, 17 (0.02%) with stage 2, 26 (0.03%) with stage 3, and 41 who were not staged. After a median (IQR) follow-up of 2.4 (1.0-3.2) years, another 36 children developed stage 3 type 1 diabetes. The 3-year cumulative risk for stage 3 type 1 diabetes in the 280 children with presymptomatic type 1 diabetes was 24.9% ([95% CI, 18.5%-30.7%]; 54 cases; annualized rate, 9.0%). Two children had diabetic ketoacidosis. Median (IQR) psychological stress scores were significantly increased at the time of metabolic staging in mothers of children with presymptomatic type 1 diabetes (3 [1-7]) compared with mothers of children without islet autoantibodies (2 [1-4]) (P = .002), but declined after 12 months of follow-up (2 [0-4]) (P < .001). CONCLUSIONS AND RELEVANCE: Among children aged 2 to 5 years in Bavaria, Germany, a program of primary care-based screening showed an islet autoantibody prevalence of 0.31%. These findings may inform considerations of population-based screening of children for islet autoantibodies.


Assuntos
Autoanticorpos/sangue , Diabetes Mellitus Tipo 1/epidemiologia , Ilhotas Pancreáticas/imunologia , Programas de Rastreamento , Doenças Assintomáticas/epidemiologia , Doenças Assintomáticas/psicologia , Pré-Escolar , Diabetes Mellitus Tipo 1/diagnóstico , Diabetes Mellitus Tipo 1/psicologia , Feminino , Seguimentos , Alemanha/epidemiologia , Humanos , Masculino , Pais , Inquéritos e Questionários
5.
PLoS Med ; 15(4): e1002548, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29614081

RESUMO

BACKGROUND: Around 0.3% of newborns will develop autoimmunity to pancreatic beta cells in childhood and subsequently develop type 1 diabetes before adulthood. Primary prevention of type 1 diabetes will require early intervention in genetically at-risk infants. The objective of this study was to determine to what extent genetic scores (two previous genetic scores and a merged genetic score) can improve the prediction of type 1 diabetes. METHODS AND FINDINGS: The Environmental Determinants of Diabetes in the Young (TEDDY) study followed genetically at-risk children at 3- to 6-monthly intervals from birth for the development of islet autoantibodies and type 1 diabetes. Infants were enrolled between 1 September 2004 and 28 February 2010 and monitored until 31 May 2016. The risk (positive predictive value) for developing multiple islet autoantibodies (pre-symptomatic type 1 diabetes) and type 1 diabetes was determined in 4,543 children who had no first-degree relatives with type 1 diabetes and either a heterozygous HLA DR3 and DR4-DQ8 risk genotype or a homozygous DR4-DQ8 genotype, and in 3,498 of these children in whom genetic scores were calculated from 41 single nucleotide polymorphisms. In the children with the HLA risk genotypes, risk for developing multiple islet autoantibodies was 5.8% (95% CI 5.0%-6.6%) by age 6 years, and risk for diabetes by age 10 years was 3.7% (95% CI 3.0%-4.4%). Risk for developing multiple islet autoantibodies was 11.0% (95% CI 8.7%-13.3%) in children with a merged genetic score of >14.4 (upper quartile; n = 907) compared to 4.1% (95% CI 3.3%-4.9%, P < 0.001) in children with a genetic score of ≤14.4 (n = 2,591). Risk for developing diabetes by age 10 years was 7.6% (95% CI 5.3%-9.9%) in children with a merged score of >14.4 compared with 2.7% (95% CI 1.9%-3.6%) in children with a score of ≤14.4 (P < 0.001). Of 173 children with multiple islet autoantibodies by age 6 years and 107 children with diabetes by age 10 years, 82 (sensitivity, 47.4%; 95% CI 40.1%-54.8%) and 52 (sensitivity, 48.6%, 95% CI 39.3%-60.0%), respectively, had a score >14.4. Scores were higher in European versus US children (P = 0.003). In children with a merged score of >14.4, risk for multiple islet autoantibodies was similar and consistently >10% in Europe and in the US; risk was greater in males than in females (P = 0.01). Limitations of the study include that the genetic scores were originally developed from case-control studies of clinical diabetes in individuals of mainly European decent. It is, therefore, possible that it may not be suitable to all populations. CONCLUSIONS: A type 1 diabetes genetic score identified infants without family history of type 1 diabetes who had a greater than 10% risk for pre-symptomatic type 1 diabetes, and a nearly 2-fold higher risk than children identified by high-risk HLA genotypes alone. This finding extends the possibilities for enrolling children into type 1 diabetes primary prevention trials.


Assuntos
Autoanticorpos/metabolismo , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/imunologia , Testes Genéticos , Ilhotas Pancreáticas/imunologia , Estudos de Casos e Controles , Criança , Pré-Escolar , Família , Feminino , Predisposição Genética para Doença , Humanos , Lactente , Recém-Nascido , Masculino , Medição de Risco , Fatores de Risco
6.
Clin Immunol ; 188: 23-30, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29229565

RESUMO

The phenotype of autoreactive T cells in type 1 diabetes is described as Th1, Th17 and/or Th21, but is largely uncharacterized. We combined multi-parameter cytokine profiling and proliferation, and identified GM-CSF producing cells as a component of the response to beta cell autoantigens proinsulin and GAD65. Overall cytokine profiles of CD4+ T cell were not altered in type 1 diabetes. In contrast, patients with recent onset type 1 diabetes had increased frequencies of proinsulin-responsive CD4+CD45RA- T cells producing GM-CSF (p=0.002), IFNγ (p=0.004), IL-17A (p=0.008), IL-21 (p=0.011), and IL-22 (p=0.007), and GAD65-responsive CD4+CD45RA- T cells producing IL-21 (p=0.039). CD4+ T cells with a GM-CSF+IFNγ-IL-17A-IL-21-IL-22- phenotype were increased in patients for responses to both proinsulin (p=0.006) and GAD65 (p=0.037). GM-CSF producing T cells are a novel phenotype in the repertoire of T helper cells in type 1 diabetes and consolidate a Th1/Th17 pro-inflammatory pathogenesis in the disease.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Citocinas/imunologia , Diabetes Mellitus Tipo 1/imunologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/imunologia , Autoantígenos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Células Cultivadas , Citocinas/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Expressão Gênica/imunologia , Glutamato Descarboxilase , Fator Estimulador de Colônias de Granulócitos e Macrófagos/biossíntese , Humanos , Proinsulina/imunologia , Proinsulina/metabolismo , Células Th1/imunologia , Células Th1/metabolismo , Células Th17/imunologia , Células Th17/metabolismo
7.
J Autoimmun ; 89: 63-74, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29224923

RESUMO

The susceptibility to autoimmune diseases is influenced by genes encoding major histocompatibility complex (MHC) proteins. By examining the epigenetic methylation maps of cord blood samples, we found marked differences in the methylation status of CpG sites within the MHC genes (cis-metQTLs) between carriers of the type 1 diabetes risk haplotypes HLA-DRB1*03-DQA1*0501-DQB1*0201 (DR3-DQ2) and HLA-DRB1*04-DQA1*0301-DQB1*0302 (DR4-DQ8). These differences were found in children and adults, and were accompanied by reduced HLA-DR protein expression in immune cells with the HLA-DR3-DQ2 haplotype. Extensive cis-metQTLs were identified in all 45 immune and non-immune type 1 diabetes susceptibility genes analyzed in this study. We observed and validated a novel association between the methylation status of CpG sites within the LDHC gene and the development of insulin autoantibodies in early childhood in children who are carriers of the highest type 1 diabetes risk genotype. Functionally relevant epigenetic changes in susceptibility genes may represent therapeutic targets for type 1 diabetes.


Assuntos
Diabetes Mellitus Tipo 1/genética , Genótipo , Antígenos HLA-DQ/genética , Cadeias HLA-DRB1/genética , L-Lactato Desidrogenase/genética , Adulto , Idoso , Alelos , Autoanticorpos/metabolismo , Pré-Escolar , Metilação de DNA , Epigênese Genética , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Lactente , Recém-Nascido , Insulina/imunologia , Masculino , Pessoa de Meia-Idade , Polimorfismo Genético , Risco
8.
EBioMedicine ; 82: 104118, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35803018

RESUMO

BACKGROUND: Diabetes in childhood and adolescence includes autoimmune and non-autoimmune forms with heterogeneity in clinical and biochemical presentations. An unresolved question is whether there are subtypes, endotypes, or theratypes within these forms of diabetes. METHODS: The multivariable classification and regression tree (CART) analysis method was used to identify subgroups of diabetes with differing residual C-peptide levels in patients with newly diagnosed diabetes before 20 years of age (n=1192). The robustness of the model was assessed in a confirmation and prognosis cohort (n=2722). FINDINGS: The analysis selected age, haemoglobin A1c (HbA1c), and body mass index (BMI) as split parameters that classified patients into seven islet autoantibody-positive and three autoantibody-negative groups. There were substantial differences in genetics, inflammatory markers, diabetes family history, lipids, 25-OH-Vitamin D3, insulin treatment, insulin sensitivity and insulin autoimmunity among the groups, and the method stratified patients with potentially different pathogeneses and prognoses. Interferon-É£ and/or tumour necrosis factor inflammatory signatures were enriched in the youngest islet autoantibody-positive groups and in patients with the lowest C-peptide values, while higher BMI and type 2 diabetes characteristics were found in older patients. The prognostic relevance was demonstrated by persistent differences in HbA1c at 7 years median follow-up. INTERPRETATION: This multivariable analysis revealed subgroups of young patients with diabetes that have potential pathogenetic and therapeutic relevance. FUNDING: The work was supported by funds from the German Federal Ministry of Education and Research (01KX1818; FKZ 01GI0805; DZD e.V.), the Innovative Medicine Initiative 2 Joint Undertaking INNODIA (grant agreement No. 115797), the German Robert Koch Institute, and the German Diabetes Association.


Assuntos
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Adolescente , Autoanticorpos , Autoimunidade , Peptídeo C , Criança , Diabetes Mellitus Tipo 1/diagnóstico , Hemoglobinas Glicadas/análise , Humanos , Adulto Jovem
9.
Diabetes Care ; 2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33627366

RESUMO

OBJECTIVE: Islet autoimmunity develops before clinical type 1 diabetes and includes multiple and single autoantibody phenotypes. The objective was to determine age-related risks of islet autoantibodies that reflect etiology and improve screening for presymptomatic type 1 diabetes. RESEARCH DESIGN AND METHODS: The Environmental Determinants of Diabetes in the Young study prospectively monitored 8,556 genetically at-risk children at 3- to 6-month intervals from birth for the development of islet autoantibodies and type 1 diabetes. The age-related change in the risk of developing islet autoantibodies was determined using landmark and regression models. RESULTS: The 5-year risk of developing multiple islet autoantibodies was 4.3% (95% CI 3.8-4.7) at 7.5 months of age and declined to 1.1% (95% CI 0.8-1.3) at a landmark age of 6.25 years (P < 0.0001). Risk decline was slight or absent in single insulin and GAD autoantibody phenotypes. The influence of sex, HLA, and other susceptibility genes on risk subsided with increasing age and was abrogated by age 6 years. Highest sensitivity and positive predictive value of multiple islet autoantibody phenotypes for type 1 diabetes was achieved by autoantibody screening at 2 years and again at 5-7 years of age. CONCLUSIONS: The risk of developing islet autoimmunity declines exponentially with age, and the influence of major genetic factors on this risk is limited to the first few years of life.

10.
Med ; 2(2): 149-163.e4, 2021 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-33163984

RESUMO

BACKGROUND: Antibody responses to virus reflect exposure and potential protection. METHODS: We developed a highly specific and sensitive approach to measuring antibodies against SARS-CoV-2 for population-scale immune surveillance. Antibody positivity was defined as a dual-positive response against both the receptor-binding domain and nucleocapsid proteins of SARS-CoV-2. Antibodies were measured by immunoprecipitation assays in capillary blood from 15,771 children aged 1 to 18 years living in Bavaria, Germany, and participating in a public health type 1 diabetes screening program (ClinicalTrials.gov: NCT04039945), in 1,916 dried blood spots from neonates in a Bavarian screening study (ClinicalTrials.gov: NCT03316261), and in 75 SARS-CoV-2-positive individuals. Virus positive incidence was obtained from the Bavarian health authority data. FINDINGS: Dual-antibody positivity was detected in none of the 3,887 children in 2019 (100% specificity) and 73 of 75 SARS-CoV-2-positive individuals (97.3% sensitivity). Antibody surveillance in children during 2020 resulted in frequencies of 0.08% in January to March, 0.61% in April, 0.74% in May, 1.13% in June, and 0.91% in July. Antibody prevalence from April 2020 was 6-fold higher than the incidence of authority-reported cases (156 per 100,000 children), showed marked variation between the seven Bavarian regions (p < 0.0001), and was not associated with age or sex. Transmission in children with virus-positive family members was 35%. 47% of positive children were asymptomatic. No association with type 1 diabetes autoimmunity was observed. Antibody frequency in newborns was 0.47%. CONCLUSIONS: We demonstrate the value of population-based screening programs for pandemic monitoring. FUNDING: The work was supported by funding from the BMBF (FKZ01KX1818).


Assuntos
COVID-19 , Diabetes Mellitus Tipo 1 , Anticorpos Antivirais , COVID-19/diagnóstico , Criança , Diabetes Mellitus Tipo 1/diagnóstico , Humanos , Recém-Nascido , Saúde Pública , SARS-CoV-2
11.
Diabetes ; 68(4): 847-857, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30655385

RESUMO

The risk for autoimmunity and subsequently type 1 diabetes is 10-fold higher in children with a first-degree family history of type 1 diabetes (FDR children) than in children in the general population (GP children). We analyzed children with high-risk HLA genotypes (n = 4,573) in the longitudinal TEDDY birth cohort to determine how much of the divergent risk is attributable to genetic enrichment in affected families. Enrichment for susceptible genotypes of multiple type 1 diabetes-associated genes and a novel risk gene, BTNL2, was identified in FDR children compared with GP children. After correction for genetic enrichment, the risks in the FDR and GP children converged but were not identical for multiple islet autoantibodies (hazard ratio [HR] 2.26 [95% CI 1.6-3.02]) and for diabetes (HR 2.92 [95% CI 2.05-4.16]). Convergence varied depending upon the degree of genetic susceptibility. Risks were similar in the highest genetic susceptibility group for multiple islet autoantibodies (14.3% vs .12.7%) and diabetes (4.8% vs. 4.1%) and were up to 5.8-fold divergent for children in the lowest genetic susceptibility group, decreasing incrementally in GP children but not in FDR children. These findings suggest that additional factors enriched within affected families preferentially increase the risk of autoimmunity and type 1 diabetes in lower genetic susceptibility strata.


Assuntos
Autoimunidade/fisiologia , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/imunologia , Autoanticorpos/imunologia , Autoimunidade/genética , Predisposição Genética para Doença/genética , Genótipo , Antígenos HLA-DQ/genética , Antígenos HLA-DQ/imunologia , Humanos , Ilhotas Pancreáticas/metabolismo , Modelos de Riscos Proporcionais , Fatores de Risco
12.
Sci Transl Med ; 10(422)2018 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-29298866

RESUMO

Molecular checkpoints that trigger the onset of islet autoimmunity or progression to human type 1 diabetes (T1D) are incompletely understood. Using T cells from children at an early stage of islet autoimmunity without clinical T1D, we find that a microRNA181a (miRNA181a)-mediated increase in signal strength of stimulation and costimulation links nuclear factor of activated T cells 5 (NFAT5) with impaired tolerance induction and autoimmune activation. We show that enhancing miRNA181a activity increases NFAT5 expression while inhibiting FOXP3+ regulatory T cell (Treg) induction in vitro. Accordingly, Treg induction is improved using T cells from NFAT5 knockout (NFAT5ko) animals, whereas altering miRNA181a activity does not affect Treg induction in NFAT5ko T cells. Moreover, high costimulatory signals result in phosphoinositide 3-kinase (PI3K)-mediated NFAT5, which interferes with FoxP3+ Treg induction. Blocking miRNA181a or NFAT5 increases Treg induction in murine and humanized models and reduces murine islet autoimmunity in vivo. These findings suggest targeting miRNA181a and/or NFAT5 signaling for the development of innovative personalized medicines to limit islet autoimmunity.


Assuntos
Diabetes Mellitus Tipo 1/metabolismo , MicroRNAs/metabolismo , Fatores de Transcrição NFATC/metabolismo , Animais , Antagomirs , Linfócitos T CD4-Positivos/metabolismo , Diabetes Mellitus Tipo 1/genética , Feminino , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Humanos , Imunogenética , Camundongos , Camundongos Mutantes , MicroRNAs/genética , Fatores de Transcrição NFATC/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA