Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 21(13)2021 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-34202605

RESUMO

Gold nanoparticles (AuNPs) have been employed as colorimetric biosensors due to the color difference between their dispersed (red) and aggregated (blue) states. Although signal amplification reactions triggered by structural changes of the ligands on AuNPs have been widely used to improve measurement sensitivity, the use of ligands is limited. In this study, we designed a AuNP-based signal-amplifying sandwich biosensor, which does not require a conformational change in the ligands. Thrombin was used as a model target, which is recognized by two different probes. In the presence of the target, an extension reaction occurs as a result of hybridization of the two probes. Then RNA synthesis is started by RNA polymerase activation due to RNA promoter duplex formation. The amplified RNA drives aggregation or dispersion of the AuNPs, and a difference of the color if the AuNP solution is observed. As this detection system does not require a conformational change in the ligand, it can be generically applied to a wide range ligands.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Nanopartículas Metálicas , Colorimetria , DNA , Ouro , Trombina
2.
Anal Sci ; 40(6): 975-979, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38424409

RESUMO

Gold nanoparticles (AuNPs) have been widely applied to molecular sensors due to their optical properties. We previously reported a molecular detection by observing the scattered light of AuNPs at a single nanoparticle level using dark field microscopy (DFM). Recently, a molecular detection method using digital immunoassay has been reported, taking advantage of the characteristics of DFM. However, the digital immunoassays reported so far have been performed by a conventional sandwich immunoassay, which is difficult to apply to the detection of small molecules. In this study, with the aim of small molecule detection, we developed a digital immunoassay method using an anti-immunocomplex antibody that specifically recognizes immunocomplexes of small molecules with antibodies. The number of AuNPs modified with anti-immunocomplex antibody bound to immunocomplex of estradiol and anti-estradiol antibody was counted at a single nanoparticle level using DFM. We demonstrated for the first time that estradiol molecule can be detected by digital immunoassay using DFM and an anti-immunocomplex antibody with a detection sensitivity of 1 pg/mL.


Assuntos
Estradiol , Ouro , Nanopartículas Metálicas , Ouro/química , Estradiol/análise , Estradiol/imunologia , Nanopartículas Metálicas/química , Imunoensaio/métodos , Anticorpos/imunologia , Anticorpos/química
3.
RSC Adv ; 13(44): 30690-30695, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37869395

RESUMO

Gold nanoparticles (AuNPs) have been utilized as colorimetric biosensors, where target molecule-induced AuNP aggregation can be recognized by a colour change from red to blue. Particularly, single-stranded DNA (ssDNA)-immobilized AuNPs (ssDNA-AuNPs) have been applied to genetic diagnosis due to their rapid and sequence-specific aggregation properties. However, the effect of the density of immobilized ssDNA have not been investigated yet. In this study, we developed a method to control the amount of immobilized ssDNA by use of ethylene glycol, which is expected to control the ice crystal spacing in a freezing-thawing ssDNA-AuNP synthesis method. We also investigated the effect of the DNA density on the sensitivity of the target ssDNA detection, and found that the detection sensitivity was improved at lower DNA densities. To discuss the reason for the improved detection sensitivity, we modified the ssDNA-AuNPs with alkane thiol for better dispersion stability against salt. The results suggest that the DNA density, rather than the dispersion stability, has a significant impact on detection sensitivity.

4.
RSC Adv ; 13(46): 32398, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37928852

RESUMO

[This corrects the article DOI: 10.1039/D3RA06528F.].

5.
J Biosci Bioeng ; 133(3): 195-207, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34998688

RESUMO

Biointerfaces are regions where biomolecules, cells, and organic materials are exposed to environmental media or come in contact with other biomaterials, cells, and inorganic/organic materials. In this review article, six research topics on biointerfaces are described to show examples of state-of-art research approaches. First, biointerface design of nanoparticles for molecular detection is described. Functionalized gold nanoparticles can be used for sensitive detection of various target molecules, including chemical compounds and biomolecules, such as DNA, proteins, cells, and viruses. Second, the interaction between bacterial cell surfaces and material surfaces, including the introduction of advances in analytical methods and theoretical calculations, are explained as well as their applications to bioprocesses. Third, bioconjugation technologies for localizing functional proteins at biointerfaces are introduced, in particular, by focusing the potential of enzymes as a catalytic tool for designing different types of bioconjugates that function at biointerfaces. Forth topics is focusing on lipid-protein interaction in cell membranes as natural biointerfaces. Examples of membrane lipid engineering are introduced, and it is mentioned how their compositional profiles affect membrane protein functions. Fifth topic is the physical method for molecular delivery across the biointerface being developed currently, such as highly efficient nanoinjection, electroporation, and nanoneedle devices, in which the key is how to perforate the cell membrane. Final topic is the chemical design of lipid- or polymer-based RNA delivery carriers and their behavior on the cell interface, which are currently attracting attention as RNA vaccine technologies targeting COVID-19. Finally, future directions of biointerface studies are presented.


Assuntos
COVID-19 , Nanopartículas Metálicas , COVID-19/prevenção & controle , Membrana Celular , Ouro , Humanos , SARS-CoV-2 , Vacinas Sintéticas , Vacinas de mRNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA