Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 623(7989): 992-1000, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37968397

RESUMO

Cerebral oedema is associated with morbidity and mortality after traumatic brain injury (TBI)1. Noradrenaline levels are increased after TBI2-4, and the amplitude of the increase in noradrenaline predicts both the extent of injury5 and the likelihood of mortality6. Glymphatic impairment is both a feature of and a contributor to brain injury7,8, but its relationship with the injury-associated surge in noradrenaline is unclear. Here we report that acute post-traumatic oedema results from a suppression of glymphatic and lymphatic fluid flow that occurs in response to excessive systemic release of noradrenaline. This post-TBI adrenergic storm was associated with reduced contractility of cervical lymphatic vessels, consistent with diminished return of glymphatic and lymphatic fluid to the systemic circulation. Accordingly, pan-adrenergic receptor inhibition normalized central venous pressure and partly restored glymphatic and cervical lymphatic flow in a mouse model of TBI, and these actions led to substantially reduced brain oedema and improved functional outcomes. Furthermore, post-traumatic inhibition of adrenergic signalling boosted lymphatic export of cellular debris from the traumatic lesion, substantially reducing secondary inflammation and accumulation of phosphorylated tau. These observations suggest that targeting the noradrenergic control of central glymphatic flow may offer a therapeutic approach for treating acute TBI.


Assuntos
Edema Encefálico , Lesões Encefálicas Traumáticas , Sistema Glinfático , Norepinefrina , Animais , Camundongos , Antagonistas Adrenérgicos/farmacologia , Antagonistas Adrenérgicos/uso terapêutico , Edema Encefálico/complicações , Edema Encefálico/tratamento farmacológico , Edema Encefálico/metabolismo , Edema Encefálico/prevenção & controle , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas Traumáticas/metabolismo , Modelos Animais de Doenças , Sistema Glinfático/efeitos dos fármacos , Sistema Glinfático/metabolismo , Inflamação/complicações , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Inflamação/prevenção & controle , Vasos Linfáticos/metabolismo , Norepinefrina/metabolismo , Fosforilação , Receptores Adrenérgicos/metabolismo
2.
Proc Natl Acad Sci U S A ; 120(40): e2305071120, 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37774097

RESUMO

Extracellular potassium concentration ([K+]e) is known to increase as a function of arousal. [K+]e is also a potent modulator of transmitter release. Yet, it is not known whether [K+]e is involved in the neuromodulator release associated with behavioral transitions. We here show that manipulating [K+]e controls the local release of monoaminergic neuromodulators, including norepinephrine (NE), serotonin, and dopamine. Imposing a [K+]e increase is adequate to boost local NE levels, and conversely, lowering [K+]e can attenuate local NE. Electroencephalography analysis and behavioral assays revealed that manipulation of cortical [K+]e was sufficient to alter the sleep-wake cycle and behavior of mice. These observations point to the concept that NE levels in the cortex are not solely determined by subcortical release, but that local [K+]e dynamics have a strong impact on cortical NE. Thus, cortical [K+]e is an underappreciated regulator of behavioral transitions.


Assuntos
Nível de Alerta , Norepinefrina , Camundongos , Animais , Eletroencefalografia , Serotonina , Dopamina
3.
PLoS Biol ; 20(9): e3001772, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36067248

RESUMO

Potassium ion (K+) plays a critical role as an essential electrolyte in all biological systems. Genetically-encoded fluorescent K+ biosensors are promising tools to further improve our understanding of K+-dependent processes under normal and pathological conditions. Here, we report the crystal structure of a previously reported genetically-encoded fluorescent K+ biosensor, GINKO1, in the K+-bound state. Using structure-guided optimization and directed evolution, we have engineered an improved K+ biosensor, designated GINKO2, with higher sensitivity and specificity. We have demonstrated the utility of GINKO2 for in vivo detection and imaging of K+ dynamics in multiple model organisms, including bacteria, plants, and mice.


Assuntos
Técnicas Biossensoriais , Transferência Ressonante de Energia de Fluorescência , Animais , Técnicas Biossensoriais/métodos , Transferência Ressonante de Energia de Fluorescência/métodos , Íons , Camundongos , Potássio
4.
J Neurochem ; 166(3): 547-559, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37005741

RESUMO

Astrocytes are the most abundant glial cell type in the brain, where they participate in various homeostatic functions. Transcriptomically, diverse astrocyte subpopulations play distinct roles during development and disease progression. However, the biochemical identification of astrocyte subtypes, especially by membrane surface protein glycosylation, remains poorly investigated. Protein tyrosine phosphatase receptor type zeta (PTPRZ) is a highly expressed membrane protein in CNS glia cells that can be modified with diverse glycosylation, including the unique HNK-1 capped O-mannosyl (O-Man) core M2 glycan mediated by brain-specific branching enzyme GnT-IX. Although PTPRZ modified with HNK-1 capped O-Man glycans (HNK-1-O-Man+ PTPRZ) is increased in reactive astrocytes of demyelination model mice, whether such astrocytes emerge in a broad range of disease-associated conditions or are limited to conditions associated with demyelination remains unclear. Here, we show that HNK-1-O-Man+ PTPRZ localizes in hypertrophic astrocytes of damaged brain areas in patients with multiple sclerosis. Furthermore, we show that astrocytes expressing HNK-1-O-Man+ PTPRZ are present in two demyelination mouse models (cuprizone-fed mice and a vanishing white matter disease model), while traumatic brain injury does not induce glycosylation. Administration of cuprizone to Aldh1l1-eGFP and Olig2KICreER/+ ;Rosa26eGFP mice revealed that cells expressing HNK-1-O-Man+ PTPRZ are derived from cells in the astrocyte lineage. Notably, GnT-IX but not PTPRZ mRNA was up-regulated in astrocytes isolated from the corpus callosum of cuprizone model mice. These results suggest that the unique PTPRZ glycosylation plays a key role in the patterning of demyelination-associated astrocytes.


Assuntos
Astrócitos , Doenças Desmielinizantes , Animais , Camundongos , Astrócitos/metabolismo , Encéfalo/metabolismo , Cuprizona/toxicidade , Cuprizona/metabolismo , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/genética , Modelos Animais de Doenças , Glicosilação , Camundongos Endogâmicos C57BL , Polissacarídeos/metabolismo , Proteínas Tirosina Fosfatases/metabolismo
5.
Brain ; 145(2): 787-797, 2022 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-34581781

RESUMO

Cerebral oedema develops after anoxic brain injury. In two models of asphyxial and asystolic cardiac arrest without resuscitation, we found that oedema develops shortly after anoxia secondary to terminal depolarizations and the abnormal entry of CSF. Oedema severity correlated with the availability of CSF with the age-dependent increase in CSF volume worsening the severity of oedema. Oedema was identified primarily in brain regions bordering CSF compartments in mice and humans. The degree of ex vivo tissue swelling was predicted by an osmotic model suggesting that anoxic brain tissue possesses a high intrinsic osmotic potential. This osmotic process was temperature-dependent, proposing an additional mechanism for the beneficial effect of therapeutic hypothermia. These observations show that CSF is a primary source of oedema fluid in anoxic brain. This novel insight offers a mechanistic basis for the future development of alternative strategies to prevent cerebral oedema formation after cardiac arrest.


Assuntos
Edema Encefálico , Parada Cardíaca , Hipotermia Induzida , Hipóxia Encefálica , Animais , Encéfalo , Edema Encefálico/etiologia , Parada Cardíaca/complicações , Parada Cardíaca/terapia , Humanos , Hipóxia Encefálica/complicações , Camundongos
6.
Int J Mol Sci ; 24(17)2023 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-37686396

RESUMO

Activation of Gq-type G protein-coupled receptors (GPCRs) gives rise to large cytosolic Ca2+ elevations in astrocytes. Previous in vitro and in vivo studies have indicated that astrocytic Ca2+ elevations are closely associated with diameter changes in the nearby blood vessels, which astrocytes enwrap with their endfeet. However, the causal relationship between astrocytic Ca2+ elevations and blood vessel diameter changes has been questioned, as mice with diminished astrocytic Ca2+ signaling show normal sensory hyperemia. We addressed this controversy by imaging cortical vasculature while optogenetically elevating astrocyte Ca2+ in a novel transgenic mouse line, expressing Opto-Gq-type GPCR Optoα1AR (Astro-Optoα1AR) in astrocytes. Blue light illumination on the surface of the somatosensory cortex induced Ca2+ elevations in cortical astrocytes and their endfeet in mice under anesthesia. Blood vessel diameter did not change significantly with Optoα1AR-induced Ca2+ elevations in astrocytes, while it was increased by forelimb stimulation. Next, we labeled blood plasma with red fluorescence using AAV8-P3-Alb-mScarlet in Astro-Optoα1AR mice. We were able to identify arterioles that display diameter changes in superficial areas of the somatosensory cortex through the thinned skull. Photo-stimulation of astrocytes in the cortical area did not result in noticeable changes in the arteriole diameters compared with their background strain C57BL/6. Together, compelling evidence for astrocytic Gq pathway-induced vasodiameter changes was not observed. Our results support the notion that short-term (<10 s) hyperemia is not mediated by GPCR-induced astrocytic Ca2+ signaling.


Assuntos
Astrócitos , Hiperemia , Animais , Camundongos , Camundongos Endogâmicos C57BL , Circulação Cerebrovascular , Transdução de Sinais , Camundongos Transgênicos
7.
Glia ; 70(8): 1484-1505, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-34582594

RESUMO

The classical view of astrocytes is that they provide supportive functions for neurons, transporting metabolites and maintaining the homeostasis of the extracellular milieu. This view is gradually changing with the advent of molecular genetics and optical methods allowing interrogation of selected cell types in live experimental animals. An emerging view that astrocytes additionally act as a mediator of synaptic plasticity and contribute to learning processes has gained in vitro and in vivo experimental support. Here we focus on the literature published in the past two decades to review the roles of astrocytes in brain plasticity in rodents, whereby the roles of neurotransmitters and neuromodulators are considered to be comparable to those in humans. We outline established inputs and outputs of astrocytes and discuss how manipulations of astrocytes have impacted the behavior in various learning paradigms. Multiple studies suggest that the contribution of astrocytes has a considerably longer time course than neuronal activation, indicating metabolic roles of astrocytes. We advocate that exploring upstream and downstream mechanisms of astrocytic activation will further provide insight into brain plasticity and memory/learning impairment.


Assuntos
Astrócitos , Roedores , Animais , Astrócitos/metabolismo , Aprendizagem/fisiologia , Transtornos da Memória/metabolismo , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia
8.
Proc Natl Acad Sci U S A ; 116(22): 11010-11019, 2019 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-31097598

RESUMO

Spontaneous waves of cortical spreading depolarization (CSD) are induced in the setting of acute focal ischemia. CSD is linked to a sharp increase of extracellular K+ that induces a long-lasting suppression of neural activity. Furthermore, CSD induces secondary irreversible damage in the ischemic brain, suggesting that K+ homeostasis might constitute a therapeutic strategy in ischemic stroke. Here we report that adrenergic receptor (AdR) antagonism accelerates normalization of extracellular K+, resulting in faster recovery of neural activity after photothrombotic stroke. Remarkably, systemic adrenergic blockade before or after stroke facilitated functional motor recovery and reduced infarct volume, paralleling the preservation of the water channel aquaporin-4 in astrocytes. Our observations suggest that AdR blockers promote cerebrospinal fluid exchange and rapid extracellular K+ clearance, representing a potent potential intervention for acute stroke.


Assuntos
Antagonistas Adrenérgicos/farmacologia , Isquemia Encefálica/metabolismo , Neuroproteção/efeitos dos fármacos , Acidente Vascular Cerebral/metabolismo , Animais , Aquaporina 4/metabolismo , Astrócitos/metabolismo , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Potássio/metabolismo
9.
Am J Physiol Endocrinol Metab ; 316(4): E622-E634, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30668149

RESUMO

Excessive maternal high-fructose diet (HFD) during pregnancy and lactation has been reported to cause metabolic disorders in the offspring. Whether the infant's brain metabolism is disturbed by maternal HFD is largely unknown. Brain energy metabolism is elevated dramatically during fetal and postnatal development, whereby maternal nutrition is a key factor that determines cellular metabolism. Astrocytes, a nonneuronal cell type in the brain, are considered to support the high-energy demands of neurons by supplying lactate. In this study, the effects of maternal HFD on astrocytic glucose metabolism were investigated using hippocampal primary cultures of female infants. We found that glycolytic capacity and mitochondrial respiration and electron transport chain were suppressed by maternal HFD. Mitochondrial DNA copy number and mitochondrial transcription factor A expression were suppressed by maternal HFD. Western blots and immunofluorescent images further indicated that the glucose transporter 1 was downregulated whereas the insulin receptor-α, phospho-insulin receptor substrate-1 (Y612) and the p85 subunit of phosphatidylinositide 3-kinase were upregulated in the HFD group. Pioglitazone, which is known to increase astrocytic glucose metabolism, effectively reversed the suppressed glycolysis, and lactate release was restored. Moreover, pioglitazone also normalized oxidative phosphorylation with an increase of cytosolic ATP. Together, these results suggest that maternal HFD impairs astrocytic energy metabolic pathways that were reversed by pioglitazone.


Assuntos
Astrócitos/efeitos dos fármacos , Açúcares da Dieta/farmacologia , Frutose/farmacologia , Glicólise/efeitos dos fármacos , Hipoglicemiantes/farmacologia , Fosforilação Oxidativa/efeitos dos fármacos , Pioglitazona/farmacologia , Animais , Astrócitos/metabolismo , DNA Mitocondrial/efeitos dos fármacos , DNA Mitocondrial/metabolismo , Feminino , Desenvolvimento Fetal , Transportador de Glucose Tipo 1/efeitos dos fármacos , Transportador de Glucose Tipo 1/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Gravidez , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Cultura Primária de Células , Ratos , Receptor de Insulina/efeitos dos fármacos , Receptor de Insulina/metabolismo , Fatores de Transcrição/efeitos dos fármacos , Fatores de Transcrição/metabolismo
10.
J Neurosci Res ; 97(8): 923-932, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30675919

RESUMO

The hippocampus is a limbic structure involved in the consolidation of episodic memory. In the recent decade, glycogenolysis in the rodent hippocampus has been shown critical for synaptic plasticity and memory formation. Astrocytes are the primary cells that store glycogen which is subject to degradation in hypoglycemic conditions. Focused microwave application to the brain halts metabolic activities, and therefore preserves brain glycogen. Immunohistochemistry against glycogen on focused microwave-assisted brain samples is suitable for both macroscopic and microscopic investigation of glycogen distribution. Glycogen immunohistochemistry in the hippocampus showed a characteristic punctate signal pattern that depended on hippocampal layers. In particular, the hilus is the most glycogen-rich subregion of the hippocampus. Moreover, large glycogen puncta (>0.5 µm in diameter) observed in neuropil areas are organized in a patchy pattern consisting of puncta-rich and -poor astrocytes. These observations are discussed with respect to distinct hippocampal neural activity states observed in live animals.


Assuntos
Astrócitos/metabolismo , Glicogênio/metabolismo , Hipocampo/metabolismo , Neurônios/metabolismo , Animais , Metabolismo Energético , Glicogenólise , Memória/fisiologia , Camundongos , Plasticidade Neuronal/fisiologia
11.
Biochem Biophys Res Commun ; 500(2): 236-241, 2018 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-29649479

RESUMO

The high-resolution in vivo imaging of mouse brain for quantitative analysis of fine structures, such as dendritic spines, requires objectives with high numerical apertures (NAs) and long working distances (WDs). However, this imaging approach is often hampered by spherical aberration (SA) that results from the mismatch of refractive indices in the optical path and becomes more severe with increasing depth of target from the brain surface. Whereas a revolving objective correction collar has been designed to compensate SA, its adjustment requires manual operation and is inevitably accompanied by considerable focal shift, making it difficult to acquire the best image of a given fluorescent object. To solve the problems, we have created an objective-attached device and formulated a fast iterative algorithm for the realization of an automatic SA compensation system. The device coordinates the collar rotation and the Z-position of an objective, enabling correction collar adjustment while stably focusing on a target. The algorithm provides the best adjustment on the basis of the calculated contrast of acquired images. Together, they enable the system to compensate SA at a given depth. As proof of concept, we applied the SA compensation system to in vivo two-photon imaging with a 25 × water-immersion objective (NA, 1.05; WD, 2 mm). It effectively reduced SA regardless of location, allowing quantitative and reproducible analysis of fine structures of YFP-labeled neurons in the mouse cerebral cortical layers. Interestingly, although the cortical structure was optically heterogeneous along the z-axis, the refractive index of each layer could be assessed on the basis of the compensation degree. It was also possible to make fully corrected three-dimensional reconstructions of YFP-labeled neurons in live brain samples. Our SA compensation system, called Deep-C, is expected to bring out the best in all correction-collar-equipped objectives for imaging deep regions of heterogeneous tissues.


Assuntos
Encéfalo/anatomia & histologia , Neuroimagem , Refratometria , Algoritmos , Animais , Feminino , Masculino , Camundongos Transgênicos
12.
J Physiol ; 595(20): 6557-6568, 2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28758690

RESUMO

KEY POINTS: Mice reared in an enriched environment are demonstrated to have larger hippocampal gamma oscillations than those reared in isolation, thereby confirming previous observations in rats. To test whether astrocytic Ca2+ surges are involved in this experience-dependent LFP pattern modulation, we used inositol trisphosphate receptor type 2 (IP3 R2)-knockout (KO) mice, in which IP3 /Ca2+ signalling in astrocytes is largely diminished. We found that this experience-dependent gamma power alteration persists in the KO mice. Interestingly, hippocampal ripple events, the synchronized events critical for memory consolidation, are reduced in magnitude and frequency by both isolated rearing and IP3 R2 deficiency. ABSTRACT: Rearing in an enriched environment (ENR) is known to enhance cognitive and memory abilities in rodents, whereas social isolation (ISO) induces depression-like behaviour. The hippocampus has been documented to undergo morphological and functional changes depending on these rearing environments. For example, rearing condition during juvenility alters CA1 stratum radiatum gamma oscillation power in rats. In the present study, hippocampal CA1 local field potentials (LFP) were recorded from bilateral CA1 in urethane-anaesthetized mice that were reared in either an ENR or ISO condition. Similar to previous findings in rats, gamma oscillation power during theta states was higher in the ENR group. Ripple events that occur during non-theta periods in the CA1 stratum pyramidale also had longer intervals in ISO mice. Because astrocytic Ca2+ elevations play a key role in synaptic plasticity, we next tested whether these changes in LFP are also expressed in inositol trisphosphate receptor type 2 (IP3 R2)-knockout (KO) mice, in which astrocytic Ca2+ elevations are largely diminished. We found that the gamma power was also higher in IP3 R2-KO-ENR mice compared to IP3 R2-KO-ISO mice, suggesting that the rearing-environment-dependent gamma power alteration does not necessarily require the astrocytic IP3 /Ca2+ pathway. By contrast, ripple events showed genotype-dependent changes, as well as rearing condition-dependent changes: ISO housing and IP3 R2 deficiency both lead to longer inter-ripple intervals. Moreover, we found that ripple magnitude in the right CA1 tended to be smaller in IP3 R2-KO. Because IP3 R2-KO mice have been reported to have depression phenotypes, our results suggest that ripple events and the mood of animals may be broadly correlated.


Assuntos
Meio Ambiente , Hipocampo/fisiologia , Receptores de Inositol 1,4,5-Trifosfato/fisiologia , Animais , Astrócitos/fisiologia , Sinalização do Cálcio , Receptores de Inositol 1,4,5-Trifosfato/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout
13.
Glia ; 64(9): 1532-45, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27353480

RESUMO

In the brain, glycogen metabolism has been implied in synaptic plasticity and learning, yet the distribution of this molecule has not been fully described. We investigated cerebral glycogen of the mouse by immunohistochemistry (IHC) using two monoclonal antibodies that have different affinities depending on the glycogen size. The use of focused microwave irradiation yielded well-defined glycogen immunoreactive signals compared with the conventional periodic acid-Schiff method. The IHC signals displayed a punctate distribution localized predominantly in astrocytic processes. Glycogen immunoreactivity (IR) was high in the hippocampus, striatum, cortex, and cerebellar molecular layer, whereas it was low in the white matter and most of the subcortical structures. Additionally, glycogen distribution in the hippocampal CA3-CA1 and striatum had a 'patchy' appearance with glycogen-rich and glycogen-poor astrocytes appearing in alternation. The glycogen patches were more evident with large-molecule glycogen in young adult mice but they were hardly observable in aged mice (1-2 years old). Our results reveal brain region-dependent glycogen accumulation and possibly metabolic heterogeneity of astrocytes. GLIA 2016;64:1532-1545.


Assuntos
Astrócitos/metabolismo , Cerebelo/metabolismo , Glicogênio/metabolismo , Animais , Imuno-Histoquímica/métodos , Masculino , Camundongos Endogâmicos C57BL , Micro-Ondas
14.
Proc Natl Acad Sci U S A ; 108(1): 373-8, 2011 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-21173225

RESUMO

Calcium-dependent activator protein for secretion 2 (CAPS2) is a dense-core vesicle-associated protein that is involved in the secretion of BDNF. BDNF has a pivotal role in neuronal survival and development, including the development of inhibitory neurons and their circuits. However, how CAPS2 affects BDNF secretion and its biological significance in inhibitory neurons are largely unknown. Here we reveal the role of CAPS2 in the regulated secretion of BDNF and show the effect of CAPS2 on the development of hippocampal GABAergic systems. We show that CAPS2 is colocalized with BDNF, both synaptically and extrasynaptically in axons of hippocampal neurons. Overexpression of exogenous CAPS2 in hippocampal neurons of CAPS2-KO mice enhanced depolarization-induced BDNF exocytosis events in terms of kinetics, frequency, and amplitude. We also show that in the CAPS2-KO hippocampus, BDNF secretion is reduced, and GABAergic systems are impaired, including a decreased number of GABAergic neurons and their synapses, a decreased number of synaptic vesicles in inhibitory synapses, and a reduced frequency and amplitude of miniature inhibitory postsynaptic currents. Conversely, excitatory neurons in the CAPS2-KO hippocampus were largely unaffected with respect to field excitatory postsynaptic potentials, miniature excitatory postsynaptic currents, and synapse number and morphology. Moreover, CAPS2-KO mice exhibited several GABA system-associated deficits, including reduced late-phase long-term potentiation at CA3-CA1 synapses, decreased hippocampal theta oscillation frequency, and increased anxiety-like behavior. Collectively, these results suggest that CAPS2 promotes activity-dependent BDNF secretion during the postnatal period that is critical for the development of hippocampal GABAergic networks.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Hipocampo/citologia , Interneurônios/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Transmissão Sináptica/fisiologia , Animais , Proteínas de Ligação ao Cálcio/genética , Células Cultivadas , Eletrofisiologia , Imuno-Histoquímica , Interneurônios/fisiologia , Potenciação de Longa Duração/fisiologia , Camundongos , Camundongos Knockout , Microscopia Eletrônica , Proteínas do Tecido Nervoso/genética , Imagem com Lapso de Tempo
15.
Neurosci Res ; 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38311032

RESUMO

The potential role of astrocytes in lateral habenula (LHb) in modulating anxiety was explored in this study. The habenula are a pair of small nuclei located above the thalamus, known for their involvement in punishment avoidance and anxiety. Herein, we observed an increase in theta-band oscillations of local field potentials (LFPs) in the LHb when mice were exposed to anxiety-inducing environments. Electrical stimulation of LHb at theta-band frequency promoted anxiety-like behavior. Calcium (Ca2+) levels and pH in the cytosol of astrocytes and local brain blood volume changes were studied in mice expressing either a Ca2+ or a pH sensor protein specifically in astrocytes and mScarlet fluorescent protein in the blood plasma using fiber photometry. An acidification response to anxiety was observed. Photoactivation of archaerhopsin-T (ArchT), an optogenetic tool that acts as an outward proton pump, results in intracellular alkalinization. Photostimulation of LHb in astrocyte-specific ArchT-expressing mice resulted in dissipation of theta-band LFP oscillation in an anxiogenic environment and suppression of anxiety-like behavior. These findings provide evidence that LHb astrocytes modulate anxiety and may offer a new target for treatment of anxiety disorders.

16.
Science ; 383(6690): 1471-1478, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38547288

RESUMO

Consciousness is lost within seconds upon cessation of cerebral blood flow. The brain cannot store oxygen, and interruption of oxidative phosphorylation is fatal within minutes. Yet only rudimentary knowledge exists regarding cortical partial oxygen tension (Po2) dynamics under physiological conditions. Here we introduce Green enhanced Nano-lantern (GeNL), a genetically encoded bioluminescent oxygen indicator for Po2 imaging. In awake behaving mice, we uncover the existence of spontaneous, spatially defined "hypoxic pockets" and demonstrate their linkage to the abrogation of local capillary flow. Exercise reduced the burden of hypoxic pockets by 52% compared with rest. The study provides insight into cortical oxygen dynamics in awake behaving animals and concurrently establishes a tool to delineate the importance of oxygen tension in physiological processes and neurological diseases.


Assuntos
Córtex Cerebral , Circulação Cerebrovascular , Hipóxia Encefálica , Medições Luminescentes , Saturação de Oxigênio , Oxigênio , Animais , Camundongos , Córtex Cerebral/irrigação sanguínea , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/metabolismo , Oxigênio/sangue , Oxigênio/metabolismo , Pressão Parcial , Hipóxia Encefálica/sangue , Hipóxia Encefálica/diagnóstico por imagem , Hipóxia Encefálica/metabolismo , Vasodilatação , Medições Luminescentes/métodos , Luciferases/genética , Luciferases/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Hipercapnia/sangue , Hipercapnia/diagnóstico por imagem , Hipercapnia/metabolismo
17.
J Nutr Biochem ; 126: 109571, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38199310

RESUMO

Maternal nutrient intake influences the health of the offspring via microenvironmental systems in digestion and absorption. Maternal high fructose diet (HFD) impairs hippocampus-dependent memory in adult female rat offspring. However, the underlying mechanisms remain largely unclear. Maternal HFD causes microbiota dysbiosis. In this study, we find that the plasma level of butyrate, a major metabolite of microbiota, is significantly decreased in the adult female maternal HFD offspring. In these rats, GPR43, a butyrate receptor was downregulated in the hippocampus. Moreover, the expressions of mitochondrial transcription factor A (TFAM), and peroxisome proliferator-activated receptor gamma coactivator 1α (PGC-1α) were downregulated in the hippocampus. The decreases of these functional proteins were reversed by fructooligosaccharides (FOS, a probiotic) treatment in adulthood. Astrocytes are critical for energy metabolism in the brain. Primary astrocyte culture from female maternal HFD offspring indicated that GPR43 and the mitochondrial biogenesis were significantly suppressed, which was reversed by supplemental butyrate incubation. The oxygen consumption rate (OCR) was reduced in the HFD group and rescued by butyrate. Intriguingly, the nuclear histone deacetylase 4 (HDAC4) was enhanced in the HFD group, suggesting an inhibitory role of butyrate on histone deacetylase activity. Inhibition of HDAC4 effectively restored the OCR, bioenergetics, and biogenesis of mitochondria. Together, these results suggested that the impaired butyrate signaling by maternal HFD could underlie the reduced mitochondrial functions in the hippocampus via HDAC4-mediated epigenetic changes.


Assuntos
Astrócitos , Butiratos , Feminino , Animais , Ratos , Butiratos/farmacologia , Metabolismo Energético , Consumo de Oxigênio , Histona Desacetilases , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Dieta Hiperlipídica
18.
bioRxiv ; 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37503027

RESUMO

Albumin, a protein produced by liver hepatocytes, represents the most abundant protein in blood plasma. We have previously engineered a liver-targeting adeno-associated viral vector (AAV) that expresses fluorescent protein-tagged albumin to visualize blood plasma in mice. While this approach is versatile for imaging in adult mice, transgene expression vanishes when AAV is administered in neonates due to dilution of the episomal AAV genome in the rapidly growing liver. Here, we use CRISPR/Cas9 genome editing to insert the fluorescent protein mNeonGreen (mNG) gene into the albumin (Alb) locus of hepatocytes to produce fluorescently labeled albumin (Alb-mNG). We constructed a CRISPR AAV that includes ∼1 kb homologous arms around Alb exon 14 to express Alb-mNG. Subcutaneous injection of this AAV with AAV-CMV-Cas9 in postnatal day 3 mice resulted in two-photon visualization of the cerebral cortex vasculature within ten days. The expression levels of Alb-mNG were persistent for at least three months and were so robust that vasomotion and capillary blood flow could be assessed transcranially in early postnatal mice. This knock-in approach provides powerful means for micro- and macroscopic imaging of cerebral vascular dynamics in postnatal and adult mice.

19.
Nat Commun ; 14(1): 1871, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-37015909

RESUMO

Information transfer within neuronal circuits depends on the balance and recurrent activity of excitatory and inhibitory neurotransmission. Chloride (Cl-) is the major central nervous system (CNS) anion mediating inhibitory neurotransmission. Astrocytes are key homoeostatic glial cells populating the CNS, although the role of these cells in regulating excitatory-inhibitory balance remains unexplored. Here we show that astrocytes act as a dynamic Cl- reservoir regulating Cl- homoeostasis in the CNS. We found that intracellular chloride concentration ([Cl-]i) in astrocytes is high and stable during sleep. In awake mice astrocytic [Cl-]i is lower and exhibits large fluctuation in response to both sensory input and motor activity. Optogenetic manipulation of astrocytic [Cl-]i directly modulates neuronal activity during locomotion or whisker stimulation. Astrocytes thus serve as a dynamic source of extracellular Cl- available for GABAergic transmission in awake mice, which represents a mechanism for modulation of the inhibitory tone during sustained neuronal activity.


Assuntos
Astrócitos , Cloretos , Camundongos , Animais , Astrócitos/fisiologia , Transmissão Sináptica , Neuroglia , Encéfalo
20.
Nat Commun ; 14(1): 6598, 2023 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-37891202

RESUMO

L-Lactate is increasingly appreciated as a key metabolite and signaling molecule in mammals. However, investigations of the inter- and intra-cellular dynamics of L-lactate are currently hampered by the limited selection and performance of L-lactate-specific genetically encoded biosensors. Here we now report a spectrally and functionally orthogonal pair of high-performance genetically encoded biosensors: a green fluorescent extracellular L-lactate biosensor, designated eLACCO2.1, and a red fluorescent intracellular L-lactate biosensor, designated R-iLACCO1. eLACCO2.1 exhibits excellent membrane localization and robust fluorescence response. To the best of our knowledge, R-iLACCO1 and its affinity variants exhibit larger fluorescence responses than any previously reported intracellular L-lactate biosensor. We demonstrate spectrally and spatially multiplexed imaging of L-lactate dynamics by coexpression of eLACCO2.1 and R-iLACCO1 in cultured cells, and in vivo imaging of extracellular and intracellular L-lactate dynamics in mice.


Assuntos
Técnicas Biossensoriais , Ácido Láctico , Camundongos , Animais , Técnicas Biossensoriais/métodos , Transferência Ressonante de Energia de Fluorescência , Células Cultivadas , Imagem Óptica , Mamíferos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA