Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Synchrotron Radiat ; 25(Pt 4): 1129-1134, 2018 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-29979174

RESUMO

Pre-edge peaks in 3d transition-metal element (Sc, Ti, V, Cr and Mn) K-edge XANES (X-ray absorption near-edge structure) spectra in AO2 (A = Ti and V), A2O3 (A = Sc, Cr and Mn) and AO (A = Mn) are measured at various temperatures. Quantitative comparisons for the XANES spectra were investigated by using absorption intensity invariant point normalization. The energy position of the difference peak (D peak) is obtained from the difference between the low- and high-temperature XANES spectra. There are two kinds of temperature dependence for pre-edge peak intensity: rutile- and anatase-type. The true temperature dependence of a transition to each orbital is obtained from the difference spectrum. In both anatase and rutile, the pre-edge peak positions of A2 and A3 are clearly different from the D1- and D2-peak positions. The A1 peak-top energies in both phases of VO2 differ from the D1 peak-top energies. The D-peak energy position determined by the difference spectrum should represent one of the true energies for the transition to an independent orbital. The peak-top positions for pre-edge peaks in XANES do not always represent the true energy for independent transitions to orbitals because several orbital transitions overlap with similar energies. This work suggests that deformation vibration (bending mode) is effective in determining the temperature dependence for the D-peak intensity.

2.
J Synchrotron Radiat ; 20(Pt 4): 641-3, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23765308

RESUMO

XANES (X-ray absorption near-edge structure) spectra of the Ti K-edges of ATiO3 (A = Ca and Sr), A2TiO4 (A = Mg and Fe), TiO2 rutile and TiO2 anatase were measured in the temperature range 20-900 K. Ti atoms for all samples were located in TiO6 octahedral sites. The absorption intensity invariant point (AIIP) was found to be between the pre-edge and post-edge. After the AIIP, amplitudes damped due to Debye-Waller factor effects with temperature. Amplitudes in the pre-edge region increased with temperature normally by thermal vibration. Use of the AIIP peak intensity as a standard point enables a quantitative comparison of the intensity of the pre-edge peaks in various titanium compounds over a wide temperature range.

3.
Artigo em Inglês | MEDLINE | ID: mdl-26830807

RESUMO

A variable-temperature single-crystal X-ray diffraction study of a synthetic BaTiO3 perovskite has been performed over the temperature range 298-778 K. A transition from a tetragonal (P4mm) to a cubic (Pm3m) phase has been revealed near 413 K. In the non-centrosymmetric P4mm symmetry group, both Ti and O atoms are displaced along the c-axis in opposite directions with regard to the Ba position fixed at the origin, so that Ti(4+) and Ba(2+) cations occupy off-center positions in the TiO6 and BaO12 polyhedra, respectively. Smooth temperature-dependent changes of the atomic coordinates become discontinuous with the phase transition. Our observations imply that the cations remain off-center even in the high-temperature cubic phase. The temperature dependence of the mean-square displacements of Ti in the cubic phase includes a significant static component which means that Ti atoms are statistically distributed in the off-center positions.


Assuntos
Bário/química , Compostos de Cálcio/química , Óxidos/química , Titânio/química , Difração de Raios X , Cátions/química , Cristalografia por Raios X , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA