Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Curr Issues Mol Biol ; 44(2): 988-997, 2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35723350

RESUMO

Nematodes, such as Caenorhabditis elegans, have been instrumental to the study of cancer. Recently, their significance as powerful cancer biodiagnostic tools has emerged, but also for mechanism analysis and drug discovery. It is expected that nematode-applied technology will facilitate research and development on the human tumor microenvironment. In the history of cancer research, which has been spurred by numerous discoveries since the last century, nematodes have been important model organisms for the discovery of cancer microenvironment. First, microRNAs (miRNAs), which are noncoding small RNAs that exert various functions to control cell differentiation, were first discovered in C. elegans and have been actively incorporated into cancer research, especially in the study of cancer genome defects. Second, the excellent sense of smell of nematodes has been applied to the diagnosis of diseases, especially refractory tumors, such as human pancreatic cancer, by sensing complex volatile compounds derived from heterogeneous cancer microenvironment, which are difficult to analyze using ordinary analytical methods. Third, a nematode model system can help evaluate invadosomes, the phenomenon of cell invasion by direct observation, which has provided a new direction for cancer research by contributing to the elucidation of complex cell-cell communications. In this cutting-edge review, we highlight milestones in cancer research history and, from a unique viewpoint, focus on recent information on the contributions of nematodes in cancer research towards precision medicine in humans.

2.
Int J Mol Sci ; 22(14)2021 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-34298902

RESUMO

One-carbon (1C) metabolism plays a key role in biological functions linked to the folate cycle. These include nucleotide synthesis; the methylation of DNA, RNA, and proteins in the methionine cycle; and transsulfuration to maintain the redox condition of cancer stem cells in the tumor microenvironment. Recent studies have indicated that small therapeutic compounds affect the mitochondrial folate cycle, epitranscriptome (RNA methylation), and reactive oxygen species reactions in cancer cells. The epitranscriptome controls cellular biochemical reactions, but is also a platform for cell-to-cell interaction and cell transformation. We present an update of recent advances in the study of 1C metabolism related to cancer and demonstrate the areas where further research is needed. We also discuss approaches to therapeutic drug discovery using animal models and propose further steps toward developing precision cancer medicine.


Assuntos
Carbono/metabolismo , Neoplasias Gastrointestinais/metabolismo , Animais , Transformação Celular Neoplásica/metabolismo , Ácido Fólico/metabolismo , Humanos , Metilação , Mitocôndrias/metabolismo , RNA/metabolismo , Espécies Reativas de Oxigênio/metabolismo
3.
Int J Mol Sci ; 21(8)2020 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-32325767

RESUMO

Since the infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was reported in China during December 2019, the coronavirus disease 2019 (COVID-19) has spread on a global scale, causing the World Health Organization (WHO) to issue a warning. While novel vaccines and drugs that target SARS-CoV-2 are under development, this review provides information on therapeutics which are under clinical trials or are proposed to antagonize SARS-CoV-2. Based on the information gained from the responses to other RNA coronaviruses, including the strains that cause severe acute respiratory syndrome (SARS)-coronaviruses and Middle East respiratory syndrome (MERS), drug repurposing might be a viable strategy. Since several antiviral therapies can inhibit viral replication cycles or relieve symptoms, mechanisms unique to RNA viruses will be important for the clinical development of antivirals against SARS-CoV-2. Given that several currently marketed drugs may be efficient therapeutic agents for severe COVID-19 cases, they may be beneficial for future viral pandemics and other infections caused by RNA viruses when standard treatments are unavailable.


Assuntos
Antivirais , Betacoronavirus , Infecções por Coronavirus/tratamento farmacológico , Pneumonia Viral/tratamento farmacológico , Antivirais/química , Antivirais/uso terapêutico , COVID-19 , China , Descoberta de Drogas , Humanos , Pandemias , SARS-CoV-2 , Tratamento Farmacológico da COVID-19
4.
Gan To Kagaku Ryoho ; 45(6): 916-920, 2018 Jun.
Artigo em Japonês | MEDLINE | ID: mdl-30026413

RESUMO

Cancer is the leading cause of death in Japan, and one in two people experience cancer in their lifetime. Early diagnosis of cancer is the most important for increasing survival rate of cancer, which is also expected to contribute to decrease budget impact of cancer, but participation rate of cancer screening is still low in Japan. Currently, people need to take multiple examinations to detect different types of cancer, which increases the cost, time and pain burdens for the examinees. Therefore, it is desirable to develop cheaper, non-invasive, as well as sensitive cancer screening methods that can detect multiple types of cancer at the same time. Most of the existing cancer screening tests including imaging diagnosis depend on artificial devices, which usually require high cost to achieve high sensitivity. We have developed a new technique, N-NOSE, which takes advantage of the good olfaction of nematode C. elegans to detect cancer smell in urine samples. N-NOSEexhibited 95.8% sensitivity and 95.0% specificity on 242 urine samples of 10 cancers types tested including those of early stages. C. elegans is easy to be maintained in a laboratory with low cost. In addition, as C. elegans is a hermaphroditic organism with homogeneous genetic background, they show stable and reproducible behavioral results. Therefore, N-NOSEis expected to offer a reasonable and non-invasive cancer screening method which is suitable for regular health checkup.


Assuntos
Caenorhabditis elegans/fisiologia , Detecção Precoce de Câncer/métodos , Neoplasias/diagnóstico , Animais , Biomarcadores Tumorais/análise , Quimiotaxia , Humanos , Olfato
5.
Genes Cells ; 20(10): 802-16, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26223767

RESUMO

The Ras-MAP kinase signaling pathway plays important roles for the olfactory reception in olfactory neurons in Caenorhabditis elegans. However, given the absence of phosphorylation targets of MAPK in the olfactory neurons, the mechanism by which this pathway regulates olfactory function is unknown. Here, we used proteomic screening to identify the mitochondrial voltage-dependent anion channel VDAC-1 as a candidate target molecule of MAPK in the olfactory system of C. elegans. We found that Amphid Wing "C" (AWC) olfactory neuron-specific knockdown of vdac-1 caused severe defects in chemotaxis toward AWC-sensed odorants. We generated a new vdac-1 mutant using the CRISPR-Cas9 system, with this mutant also showing decreased chemotaxis toward odorants. This defect was rescued by AWC-specific expression of vdac-1, indicating that functions of VDAC-1 in AWC neurons are essential for normal olfactory reception in C. elegans. We observed that AWC-specific RNAi of vdac-1 reduced AWC calcium responses to odorant stimuli and caused a decrease in the quantity of mitochondria in the sensory cilia. Behavioral abnormalities in vdac-1 knockdown animals might therefore be due to reduction of AWC response, which might be caused by loss of mitochondria in the cilia. Here, we showed that the function of VDAC-1 is regulated by phosphorylation and identified Thr175 as the potential phosphorylation site of MAP kinase.


Assuntos
Caenorhabditis elegans/metabolismo , Neurônios Receptores Olfatórios/metabolismo , Canal de Ânion 1 Dependente de Voltagem/genética , Canal de Ânion 1 Dependente de Voltagem/metabolismo , Animais , Sistemas CRISPR-Cas , Caenorhabditis elegans/genética , Cálcio/metabolismo , Quimiotaxia , Cílios/metabolismo , Técnicas de Silenciamento de Genes , Mitocôndrias/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Fosforilação , Olfato , Treonina/metabolismo , Proteínas ras/metabolismo
6.
BMC Biol ; 13: 6, 2015 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-25603799

RESUMO

BACKGROUND: The nematode worm Caenorhabditis elegans, in which loss-of-function mutants and RNA interference (RNAi) models are available, is a model organism useful for analyzing effects of genes on various life phenomena, including behavior. In particular, RNAi is a powerful tool that enables time- or cell-specific knockdown via heat shock-inducible RNAi or cell-specific RNAi. However, conventional RNAi is insufficient for investigating pleiotropic genes with various sites of action and life stage-dependent functions. RESULTS: Here, we investigated the Ras gene for its role in exploratory behavior in C. elegans. We found that, under poor environmental conditions, mutations in the Ras-MAPK signaling pathway lead to circular locomotion instead of normal exploratory foraging. Spontaneous foraging is regulated by a neural circuit composed of three classes of neurons: IL1, OLQ, and RMD, and we found that Ras functions in this neural circuit to modulate the direction of locomotion. We further observed that Ras plays an essential role in the regulation of GLR-1 glutamate receptor localization in RMD neurons. To investigate the temporal- and cell-specific profiles of the functions of Ras, we developed a new RNAi method that enables simultaneous time- and cell-specific knockdown. In this method, one RNA strand is expressed by a cell-specific promoter and the other by a heat shock promoter, resulting in only expression of double-stranded RNA in the target cell when heat shock is induced. This technique revealed that control of GLR-1 localization in RMD neurons requires Ras at the adult stage. Further, we demonstrated the application of this method to other genes. CONCLUSIONS: We have established a new RNAi method that performs simultaneous time- and cell-specific knockdown and have applied this to reveal temporal profiles of the Ras-MAPK pathway in the control of exploratory behavior under poor environmental conditions.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiologia , Comportamento Alimentar , Interferência de RNA , Proteínas ras/metabolismo , Animais , Caenorhabditis elegans/genética , Perfilação da Expressão Gênica , Locomoção , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Mutação , Rede Nervosa/fisiologia , Neurônios/fisiologia , Receptores de Glutamato/metabolismo , Reprodutibilidade dos Testes , Fatores de Tempo
7.
J Phys Ther Sci ; 27(3): 627-9, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25931695

RESUMO

[Purpose] To clarify rotator cuff muscular activity in the raised position of the closed kinetic chain (CKC) exercise. [Subjects] Twenty-nine cases were studied, 19 men and 10 women (average age 21.5 ±4.7 years old, average body weight 60.1 kg ±11.4). [Methods] To determine the effects of the closed kinetic chain exercise on the upper limb, we measured the surface EMG of the infraspinatus muscle, the trapezius (upper fiber) and the deltoid (middle fiber) with the arm elevated. [Results] Our results show that at an elevation angle of 150° in the scapular plane of the upper limb, with 5% body weight load, the EMG activities of the infraspinatus muscle are approximately 30% of maximum voluntary contraction (MVC). [Conclusion] The raised position of the CKC exercise is effective in physical therapy for functional recovery of the infraspinatus muscle.

8.
Biomedicines ; 12(6)2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38927549

RESUMO

Gastrointestinal cancers, which include a variety of esophageal and colorectal malignancies, present a global health challenge and require effective treatment strategies. In the evolving field of cancer immunotherapy, tissue-resident memory T cells (Trm cells) have emerged as important players in the immune response within nonlymphoid tissues. In this review, we summarize the characteristics and functions of Trm cells and discuss their profound implications for patient outcomes in gastrointestinal cancers. Positioned strategically in peripheral tissues, Trm cells have functions beyond immune surveillance, affecting tumor progression, prognosis, and response to immunotherapy. Studies indicate that Trm cells are prognostic markers and correlate positively with enhanced survival. Their presence in the tumor microenvironment has sparked interest in their therapeutic potential, particularly with respect to immune checkpoint inhibitors, which may improve cancer treatment. Understanding how Trm cells work will not only help to prevent cancer spread through effective treatment but will also contribute to disease prevention at early stages as well as vaccine development. The role of Trm cells goes beyond just cancer, and they have potential applications in infectious and autoimmune diseases. This review provides a thorough analysis of Trm cells in gastrointestinal cancers, which may lead to personalized and effective cancer therapies.

9.
Biomedicines ; 11(11)2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-38001906

RESUMO

Early cancer detection is key to improving patient survival and quality of life and reducing cancer treatments' financial burden [...].

10.
Biomedicines ; 11(9)2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37760999

RESUMO

The pancreas is a vital organ with exocrine and endocrine functions. Pancreatitis is an inflammation of the pancreas caused by alcohol consumption and gallstones. This condition can heighten the risk of pancreatic cancer (PC), a challenging disease with a high mortality rate. Genetic and epigenetic factors contribute significantly to PC development, along with other risk factors. Early detection is crucial for improving PC outcomes. Diagnostic methods, including imagining modalities and tissue biopsy, aid in the detection and analysis of PC. In contrast, liquid biopsy (LB) shows promise in early tumor detection by assessing biomarkers in bodily fluids. Understanding the function of the pancreas, associated diseases, risk factors, and available diagnostic methods is essential for effective management and early PC detection. The current clinical examination of PC is challenging due to its asymptomatic early stages and limitations of highly precise diagnostics. Screening is recommended for high-risk populations and individuals with potential benign tumors. Among various PC screening methods, the N-NOSE plus pancreas test stands out with its high AUC of 0.865. Compared to other commercial products, the N-NOSE plus pancreas test offers a cost-effective solution for early detection. However, additional diagnostic tests are required for confirmation. Further research, validation, and the development of non-invasive screening methods and standardized scoring systems are crucial to enhance PC detection and improve patient outcomes. This review outlines the context of pancreatic cancer and the challenges for early detection.

11.
Cancers (Basel) ; 15(15)2023 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-37568686

RESUMO

BACKGROUND: The nematode Caenorhabditis elegans (C. elegans) possesses a sophisticated sense of smell and is used for a novel cancer screening test that utilizes the chemotaxis index. We designed a single-institution, prospective study to confirm the ability of Nematode Nose (N-NOSE) to determine preoperative chemotherapy's efficacy for esophageal cancer patients. PATIENTS AND METHODS: We investigated the predictability of N-NOSE screening for the clinical effects of preoperative chemotherapy for esophageal cancer patients receiving radical surgery. The index reduction score (IRS) was calculated via the chemotaxis of C. elegans at three points: before treatment, before surgery, and after surgery, and its clinical relevance was examined. RESULT: Thirty-nine patients with esophageal cancer were enrolled from August 2020 to December 2021, and 30 patients receiving radical surgery were examined. Complete response or partial response was achieved in 23 cases (76.7%). When the target of the treatment effect was complete response only, the prediction accuracies of the IRS calculated by area under the curve was 0.85 (95% Confidence interval: 0.62-1) in clinically achieving complete response group, and the sensitivity and specificity were 1 and 0.63, respectively. CONCLUSION: Index reduction score using N-NOSE screening may reflect the efficacy of chemotherapy for esophageal cancer patients. A large-scale prospective study at multiple centers is desired in the future.

12.
J Neurosci ; 31(8): 3007-15, 2011 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-21414922

RESUMO

Animals facing conflicting sensory cues make a behavioral choice between competing alternatives through integration of the sensory cues. Here, we performed a genetic screen to identify genes important for the sensory integration of two conflicting cues, the attractive odorant diacetyl and the aversive stimulus Cu(2+), and found that the membrane-bound guanylyl cyclase GCY-28 and the receptor tyrosine kinase SCD-2 regulate the behavioral choice between these alternatives in Caenorhabditis elegans. The gcy-28 mutants and scd-2 mutants show an abnormal bias in the behavioral choice between the cues, although their responses to each individual cue are similar to those in wild-type animals. Mutants in a gene encoding a cyclic nucleotide gated ion channel, cng-1, also exhibit the defect in sensory integration. Molecular genetic analyses suggested that GCY-28 and SCD-2 regulate sensory integration in AIA interneurons, where the conflicting sensory cues may converge. Genetic ablation or hyperpolarization of AIA interneurons showed nearly the same phenotype as gcy-28 or scd-2 mutants in the sensory integration, although this did not affect the sensory response to each individual cue. In gcy-28 or scd-2 mutants, activation of AIA interneurons is sufficient to restore normal sensory integration. These results suggest that the activity of AIA interneurons regulates the behavioral choice between the alternatives. We propose that GCY-28 and SCD-2 regulate sensory integration by modulating the activity of AIA interneurons.


Assuntos
Comportamento Animal/fisiologia , Proteínas de Caenorhabditis elegans/fisiologia , Caenorhabditis elegans/enzimologia , Comportamento de Escolha/fisiologia , Guanilato Ciclase/fisiologia , Interneurônios/enzimologia , Proteínas Tirosina Quinases/fisiologia , Receptores Proteína Tirosina Quinases/fisiologia , Receptores Acoplados a Guanilato Ciclase/fisiologia , Animais , Caenorhabditis elegans/citologia , Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiologia , Proteínas de Caenorhabditis elegans/genética , Guanilato Ciclase/genética , Interneurônios/citologia , Proteínas de Membrana , Proteínas Tirosina Quinases/genética , Receptores Proteína Tirosina Quinases/genética , Receptores Acoplados a Guanilato Ciclase/genética
13.
Biomedicines ; 10(10)2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36289633

RESUMO

Regular cancer screening is critical for early cancer detection. Cancer screening tends to be burdensome, invasive, and expensive, especially for a comprehensive multi-organ check. Improving the rate and effectiveness of routine cancer screenings remain a challenge in health care. Multi-cancer early detection (MCED) is an exciting concept and a potentially effective solution for addressing current issues with routine cancer screening. In recent years, several technologies have matured for MCED, such as identifying cell-free tumor DNA in blood or using organisms such as Caenorhabditis elegans as a tool for early cancer detection. In Japan, N-NOSE is a commercially available multi-cancer detection test based on the chemotaxis of C. elegans using a urine sample showing 87.5% sensitivity and 90.2% specificity. In this review, we focus on using C. elegans as a powerful biosensor for universal cancer screening. We review N-NOSE clinical research results, spotlighting it as an effective primary cancer screening test.

14.
Biochem Biophys Rep ; 32: 101332, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36111250

RESUMO

Cancer is the leading cause of death in dogs and cats. Early diagnosis of cancer is critical for effective treatment and improving survival rates. Nematode-NOSE (N-NOSE) is a commercially available non-invasive human cancer screening test that uses the sense of smell of the nematode Caenorhabditis elegans showing a distinct chemotactic response toward the urine of an individual with cancer compared to healthy ones. 15 types of human cancer (stomach, colon-rectum, lung, breast, pancreas, liver, prostate, uterus, esophagus, gallbladder, bile duct, kidney, urinary bladder, ovary, and oropharynx cancers) can be detected by N-NOSE. A non-invasive method for accurate cancer screening is needed for pets. In this study, we evaluated the effectiveness of N-NOSE in detecting cancer using canine and feline urine samples. We found a significant difference in chemotaxis index values between healthy subjects and cancer patients in both canine (p < 0.01*) and feline (p < 0.04*) urine samples. Receiver operating characteristic (ROC) analysis highlights the good performance of the test with areas under the curve (AUC) of 0.8114 and 0.7851 for dogs and 0.7667 and 0.9000 for cats when using 2 different dilutions of urine samples. Our study suggests that N-NOSE has the potential as a simple, accurate, and low-cost cancer screening test in both dogs and cats.

15.
Biomolecules ; 12(10)2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36291712

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is caused by genetic mutations in four genes: KRAS proto-oncogene and GTPase (KRAS), tumor protein P53 (TP53), cyclin-dependent kinase inhibitor 2A (CDKN2A), and mothers against decapentaplegic homolog 4 (SMAD4), also called the big 4. The changes in tumors are very complex, making their characterization in the early stages challenging. Therefore, the development of innovative therapeutic approaches is desirable. The key to overcoming PDAC is diagnosing it in the early stages. Therefore, recent studies have investigated the multifaced characteristics of PDAC, which includes cancer cell metabolism, mesenchymal cells including cancer-associated fibroblasts and immune cells, and metagenomics, which extend to characterize various biomolecules including RNAs and volatile organic compounds. Various alterations in the KRAS-dependent as well as KRAS-independent pathways are involved in the refractoriness of PDAC. The optimal combination of these new technologies is expected to help treat intractable pancreatic cancer.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Compostos Orgânicos Voláteis , Humanos , Proteína Supressora de Tumor p53/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/metabolismo , Mutação , DNA/uso terapêutico , Quinases Ciclina-Dependentes/metabolismo , Neoplasias Pancreáticas
16.
Cancer Treat Res Commun ; 27: 100370, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33901923

RESUMO

Early cancer detection is critical for effective treatment. N-NOSE (Nematode-NOSE) is a simple, inexpensive, and highly sensitive cancer screening method based on the chemotaxis of the nematode Caenorhabditis elegans, which shows evasive action from the urine of healthy individuals while being attracted to the urine of cancer patients. Initially, N-NOSE relied on chemotaxis indexes obtained with 10-fold dilutions of urine samples. However, cancer tissue size and concentrations of cancer odors differ among cancer patients. In this study, we examined the accuracy improvement of N-NOSE method by using two types of dilutions, 10-fold and 100-fold. We have conducted N-NOSE tests with urine samples from 32 cancer patients (esophageal, gastric, colorectal, gallbladder, cholangiocarcinoma, breast, malignant lymphoma, and acute myeloid leukemia) along with 143 healthy subjects. Our data showed a significant difference in the N-NOSE at 10-fold dilution between the two groups (p < 0.0001), with an area under the ROC curve (AUC) of 0.9188 based on receiver operating characteristic (ROC) analysis. N-NOSE index at 100-fold dilutions was also significantly different between the two groups (p < 0.0001), with an AUC of 0.9032 based on ROC analysis. In this clinical study, we further improve N-NOSE with a combined method of two dilutions (10-fold and 100-fold) of urine samples, which results in a markedly improvement in cancer detection sensitivity of 87.5%. N-NOSE sensitivity improvement was significantly high even for early-stage cancer detection, which is in stark contrast with the sensitivity of detection using blood tumor markers (CEA, CA19-9 and CA15-3). These results strongly suggest that the N-NOSE test by this new combined method strikes a good balance between sensitivity and specificity.


Assuntos
Caenorhabditis elegans/fisiologia , Quimiotaxia , Detecção Precoce de Câncer/métodos , Neoplasias/diagnóstico , Neoplasias/urina , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Área Sob a Curva , Antígeno CA-19-9/sangue , Antígeno Carcinoembrionário/sangue , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mucina-1/sangue , Neoplasias/sangue , Curva ROC , Urina/química
17.
Oncotarget ; 12(17): 1687-1696, 2021 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-34434497

RESUMO

Although early detection and diagnosis are indispensable for improving the prognosis of patients with pancreatic cancer, both have yet to be achieved. Except for pancreatic cancer, other cancers have already been screened through scent tests using animals or microorganisms, including Caenorhabditis elegans. While such a method may greatly improve the prognosis of pancreatic cancer, no studies have investigated the same, mainly given the difficulty of collecting suitable samples from patients with early-stage pancreatic cancer. In this study, we organized a nationwide study group comprising high-volume centers throughout Japan to collect patients with very-early-stage pancreatic cancer (stage 0 or IA). We initially performed an open-label study involving 83 cases (stage 0-IV), with subsequent results showing significant differences after surgical removal in stage 0-IA (×10 dilution: p < 0.001; ×100 dilution: p < 0.001). Thereafter, a blinded study on 28 cases (11 patients with stage 0 or IA disease and 17 healthy volunteers) was conducted by comparing very-early-stage pancreatic cancer patients with healthy volunteers to determine whether C. elegans could detect the scent of cancer for the diagnosis of early-stage pancreatic cancer. Preoperative urine samples had a significantly higher chemotaxis index compared to postoperative samples in patients with pancreatic cancer [×10 dilution: p < 0.001, area under the receiver operating characteristic curve (AUC) = 0.845; ×100 dilution: p < 0.001, AUC = 0.820] and healthy volunteers (×10 dilution: p = 0.034; ×100 dilution: p = 0.088). Moreover, using the changes in preoperative and postoperative chemotaxis index, this method had a higher sensitivity for detecting early pancreatic cancer compared to existing diagnostic markers. The clinical application C. elegans for the early diagnosis of cancer can certainly be expected in the near future.

18.
Pancreas ; 50(5): 673-678, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34016888

RESUMO

OBJECTIVES: Early detection of pancreatic cancer is notoriously difficult. A novel cancer diagnostic method using the ability of nematodes to detect odor of urine samples has been developed (N-NOSE). This method has a high sensitivity and specificity for various cancers; however, it has not yet been verified in pancreatic cancer. We examined the usefulness of this method to aid early diagnosis of pancreatic cancer in a cancer center. METHODS: We collected urine samples and clinical data from patients hospitalized in our division, between July 2017 and February 2019. We excluded patients with a known current or past history of other cancers. We investigated the relationship between the results of N-NOSE and the presence of pancreatic cancer. RESULTS: There were 95 noncancer cases and 104 pancreatic cancer cases. The sensitivity and specificity of N-NOSE for pancreatic cancer were 84.6% (88/104) and 60% (57/95), respectively. N-NOSE was able to detect stages 0 to I pancreatic cancer and had a higher correlation with early-stage pancreatic cancer than advanced stage. CONCLUSIONS: N-NOSE has sufficient sensitivity and specificity for use in clinical practice, and it holds great potential as a diagnostic aid for pancreatic cancer, especially for early-stage pancreatic cancer.


Assuntos
Bioensaio , Biomarcadores Tumorais/urina , Caenorhabditis elegans/fisiologia , Detecção Precoce de Câncer , Odorantes/análise , Percepção Olfatória , Neoplasias Pancreáticas/diagnóstico , Olfato , Idoso , Animais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/urina , Valor Preditivo dos Testes , Estudos Prospectivos , Reprodutibilidade dos Testes
19.
Genetics ; 181(4): 1347-57, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19189947

RESUMO

Caenorhabditis elegans genome carries two Ggamma genes, gpc-1 and gpc-2, and two Gbeta genes, gpb-1 and gpb-2. Of these, gpc-2 and gpb-1 are expressed ubiquitously and are essential for viability. Through a genetic screen, we identified gpc-1 as essential for olfactory adaptation. While wild-type animals show decreased chemotaxis to the odorant benzaldehyde after a short preexposure to the odorant, gpc-1 mutants are still attracted to the odorant after the same preexposure. Cell-specific rescue experiments show that gpc-1 acts in the AWC olfactory neurons. Coexpression of GPC-1 and GPB-1, but not GPB-2, caused enhanced adaptation, indicating that GPC-1 may act with GPB-1. On the other hand, knock down of gpc-2 by cell-targeted RNAi caused reduced chemotaxis to the odorant in unadapted animals, indicating that GPC-2 mainly act for olfactory sensation and the two Ggamma's have differential functions. Nonetheless, overexpression of gpc-2 in AWC neurons rescued the adaptation defects of gpc-1 mutants, suggesting partially overlapping functions of the two Ggamma's. We further tested genetic interaction of gpc-1 with several other genes involved in olfactory adaptation. Our analyses place goa-1 Goalpha and let-60 Ras in parallel to gpc-1. In contrast, a gain-of-function mutation in egl-30 Gqalpha was epistatic to gpc-1, suggesting the possibility that gpc-1 Ggamma may act upstream of egl-30 Gqalpha.


Assuntos
Adaptação Fisiológica/genética , Proteínas de Caenorhabditis elegans/fisiologia , Caenorhabditis elegans/genética , Subunidades gama da Proteína de Ligação ao GTP/fisiologia , Condutos Olfatórios/fisiologia , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/fisiologia , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Cílios/metabolismo , Epistasia Genética , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/fisiologia , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/fisiologia , Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Subunidades beta da Proteína de Ligação ao GTP/fisiologia , Subunidades gama da Proteína de Ligação ao GTP/genética , Subunidades gama da Proteína de Ligação ao GTP/metabolismo , Modelos Biológicos , Condutos Olfatórios/anormalidades , Condutos Olfatórios/metabolismo , Transdução de Sinais/genética , Proteínas ras/genética , Proteínas ras/fisiologia
20.
Diagnostics (Basel) ; 10(6)2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32532032

RESUMO

Since the 1980s, molecular biology has been used to investigate medical field mechanisms that still require the use of crude biological materials in order to achieve their necessary goals. Transcription factor-induced pluripotent stem cells are used in regenerative medicine to screen drugs and to support lost tissues. However, these cells insufficiently reconstruct whole organs and require various intact cells, such as damaged livers and diabetic pancreases. For efficient gene transfer in medical use, virally mediated gene transfers are used, although immunogenic issues are investigated. To obtain efficient detective and diagnostic power in intractable diseases, biological tools such as roundworms and zebrafish have been found to be useful for high-throughput screening (HST) and diagnosis. Taken together, this biological approach will help to fill the gaps between medical needs and novel innovations in the field of medicine.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA