Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros

País/Região como assunto
Intervalo de ano de publicação
1.
Cent Eur J Public Health ; 29(4): 247-258, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35026062

RESUMO

The dramatic progress in tumour biology and immunology in the past several years has opened new avenues for the treatment and prevention of cancer. One of the great contributions of the immunotherapeutic approaches is an increasing understanding of the immunology of cancer, which is, gradually creating conditions for the development of prophylactic anti-cancer vaccines. Efficient vaccines have been developed and employed for the prophylaxis of two frequent cancers of viral origin, namely cervical cancer and liver cancer. The new knowledge on the interactions between the immune system and the malignant tumors seems to provide means for the development of prophylactic vaccines against cancers developing due to the mutations in the proto-oncogenes converting their products into oncoproteins. According to the present estimates, these cancers form a great majority of human malignancies. Recent evidence has indicated that the immune system recognizes such mutated proteins, and that the development of cancer is due to the failure of the immune system to eliminate neoplastic cells. Followingly, it can be expected that inducing immunity against the mutated epitopes will increase the capacity of the body to deal with the initiated precancerous cells. In the present paper this hypothesis is primarily discussed in the relationship with colorectal cancer (CRC), which seems to be a well-fitting candidate for prophylactic vaccination. CRC is the third most frequent malignancy and the fourth most common cause of cancer mortality. Mutations of two proto-oncogenes, namely RAS and RAF, are involved in the majority of CRC cases and, in addition, they are shared with other human malignancies. Therefore, the strategy to be used for prophylaxis of CRC is discussed together with several other frequent human cancers, namely lung cancer, pancreatic duct cancer and melanoma. The prophylactic vaccines proposed are aimed at the reduction of the incidence of these and, to a lesser extent, some other cancers.


Assuntos
Melanoma , Neoplasias Pancreáticas , Infecções por Papillomavirus , Vacinas contra Papillomavirus , Neoplasias do Colo do Útero , Vacinas , Feminino , Humanos , Vacinação
2.
Hepatology ; 68(5): 1695-1709, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29679386

RESUMO

Chronic hepatitis B virus (HBV) infection is a major cause of chronic liver disease and cancer worldwide. The mechanisms of viral genome sensing and the evasion of innate immune responses by HBV infection are still poorly understood. Recently, the cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS) was identified as a DNA sensor. In this study, we investigated the functional role of cGAS in sensing HBV infection and elucidate the mechanisms of viral evasion. We performed functional studies including loss-of-function and gain-of-function experiments combined with cGAS effector gene expression profiling in an infectious cell culture model, primary human hepatocytes, and HBV-infected human liver chimeric mice. Here, we show that cGAS is expressed in the human liver, primary human hepatocytes, and human liver chimeric mice. While naked relaxed-circular HBV DNA is sensed in a cGAS-dependent manner in hepatoma cell lines and primary human hepatocytes, host cell recognition of viral nucleic acids is abolished during HBV infection, suggesting escape from sensing, likely during packaging of the genome into the viral capsid. While the hepatocyte cGAS pathway is functionally active, as shown by reduction of viral covalently closed circular DNA levels in gain-of-function studies, HBV infection suppressed cGAS expression and function in cell culture models and humanized mice. Conclusion: HBV exploits multiple strategies to evade sensing and antiviral activity of cGAS and its effector pathways.


Assuntos
Vírus da Hepatite B/patogenicidade , Hepatite B/fisiopatologia , Hepatócitos/virologia , Evasão da Resposta Imune/fisiologia , Nucleotídeos Cíclicos/metabolismo , Animais , Western Blotting , Técnicas de Cultura de Células , DNA Viral/imunologia , Perfilação da Expressão Gênica/métodos , Hepatite B/imunologia , Hepatócitos/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Evasão da Resposta Imune/imunologia , Hibridização in Situ Fluorescente/métodos , Camundongos , Reação em Cadeia da Polimerase em Tempo Real
3.
Blood ; 120(23): 4544-51, 2012 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-23053572

RESUMO

The elimination of hepatitis C virus (HCV) in > 50% of chronically infected patients by treatment with IFN-α suggests that plasmacytoid dendritic cells (pDCs), major producers of IFN-α, play an important role in the control of HCV infection. However, despite large amounts of Toll-like receptor 7-mediated IFN-α, produced by pDCs exposed to HCV-infected hepatocytes, HCV still replicates in infected liver. Here we show that HCV envelope glycoprotein E2 is a novel ligand of pDC C-type lectin immunoreceptors (CLRs), blood DC antigen 2 (BDCA-2) and DC-immunoreceptor (DCIR). HCV particles inhibit, via binding of E2 glycoprotein to CLRs, production of IFN-α and IFN-λ in pDCs exposed to HCV-infected hepatocytes, and induce in pDCs a rapid phosphorylation of Akt and Erk1/2, in a manner similar to the crosslinking of BDCA-2 or DCIR. Blocking of BDCA-2 and DCIR with Fab fragments of monoclonal antibodies preserves the capacity of pDCs to produce type I and III IFNs in the presence of HCV particles. Thus, negative interference of CLR signaling triggered by cell-free HCV particles with Toll-like receptor signaling triggered by cell-associated HCV results in the inhibition of the principal pDC function, production of IFN.


Assuntos
Células Dendríticas/imunologia , Interferons/imunologia , Lectinas Tipo C/imunologia , Glicoproteínas de Membrana/imunologia , Receptores Imunológicos/imunologia , Proteínas do Envelope Viral/imunologia , Animais , Células COS , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/virologia , Linhagem Celular Tumoral , Células Cultivadas , Chlorocebus aethiops , Células Dendríticas/metabolismo , Células Dendríticas/virologia , MAP Quinases Reguladas por Sinal Extracelular/imunologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Citometria de Fluxo , Hepacivirus/imunologia , Hepacivirus/metabolismo , Hepacivirus/fisiologia , Interações Hospedeiro-Patógeno/imunologia , Humanos , Interferons/metabolismo , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Ligantes , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/virologia , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Fosforilação , Ligação Proteica , Proteínas Proto-Oncogênicas c-akt/imunologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo , Receptor 7 Toll-Like/imunologia , Receptor 7 Toll-Like/metabolismo , Proteínas do Envelope Viral/metabolismo
4.
J Virol ; 86(2): 1090-6, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22090103

RESUMO

Plasmacytoid dendritic cells (pDCs) respond to viral infection by production of alpha interferon (IFN-α), proinflammatory cytokines, and cell differentiation. The elimination of hepatitis C virus (HCV) in more than 50% of chronically infected patients by treatment with IFN-α suggests that pDCs can play an important role in the control of HCV infection. pDCs exposed to HCV-infected hepatoma cells, in contrast to cell-free HCV virions, produce large amounts of IFN-α. To further investigate the molecular mechanism of HCV sensing, we studied whether exposure of pDCs to HCV-infected hepatoma cells activates, in parallel to interferon regulatory factor 7 (IRF7)-mediated production of IFN-α, nuclear factor kappa B (NF-κB)-dependent pDC responses, such as expression of the differentiation markers CD40, CCR7, CD86, and tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) and secretion of the proinflammatory cytokines TNF-α and interleukin 6 (IL-6). We demonstrate that exposure of pDCs to HCV-infected hepatoma cells surprisingly did not induce phosphorylation of NF-κB or cell surface expression of CD40, CCR7, CD86, or TRAIL or secretion of TNF-α and IL-6. In contrast, CpG-A and CpG-B induced production of TNF-α and IL-6 in pDCs exposed to the HCV-infected hepatoma cells, showing that cell-associated virus did not actively inhibit Toll-like receptor (TLR)-mediated NF-κB phosphorylation. Our results suggest that cell-associated HCV signals in pDCs via an endocytosis-dependent mechanism and IRF7 but not via the NF-κB pathway. In spite of IFN-α induction, cell-associated HCV does not induce a full functional response of pDCs. These findings contribute to the understanding of evasion of immune responses by HCV.


Assuntos
Células Dendríticas/imunologia , Células Dendríticas/virologia , Hepacivirus/fisiologia , Hepatite C/imunologia , NF-kappa B/imunologia , Transdução de Sinais , Linhagem Celular Tumoral , Células Cultivadas , Hepacivirus/genética , Hepatite C/genética , Hepatite C/virologia , Humanos , Interferon-alfa/genética , Interferon-alfa/imunologia , NF-kappa B/genética , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia
5.
Trends Immunol ; 31(10): 391-7, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20832362

RESUMO

HIV-1, hepatitis B virus, hepatitis C virus, and human papillomavirus type 16 cause persistent infections that frequently precede cancer development. Virions of these viruses are weak inducers of interferon-α and impair Toll-like receptor (TLR)9 function. Loss of TLR9 responsiveness also occurs in tumors without viral etiology such as breast, ovary, and head and neck carcinomas. Recent reports have suggested that viruses and components of the tumor microenviroment interact with regulatory receptors on plasmacytoid dendritic cells (pDCs) to impair TLR7 and TLR9 signaling, and to downregulate TLR9 gene expression. The limited responsiveness of pDCs might contribute to reduced innate immune responses during chronic viral infections and oncogenesis, and represent a target for new therapeutic approaches based on TLR agonists.


Assuntos
Hepatite Crônica/complicações , Neoplasias/imunologia , Neoplasias/virologia , Transdução de Sinais , Receptor 7 Toll-Like/imunologia , Receptor Toll-Like 9/imunologia , Animais , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/etiologia , Receptor 7 Toll-Like/agonistas , Receptor 7 Toll-Like/metabolismo , Receptor Toll-Like 9/agonistas , Receptor Toll-Like 9/metabolismo
6.
Nucleic Acids Res ; 39(20): 8728-39, 2011 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-21771862

RESUMO

Syncytin-1 and -2, human fusogenic glycoproteins encoded by the env genes of the endogenous retroviral loci ERVWE1 and ERVFRDE1, respectively, contribute to the differentiation of multinucleated syncytiotrophoblast in chorionic villi. In non-trophoblastic cells, however, the expression of syncytins has to be suppressed to avoid potential pathogenic effects. We studied the epigenetic suppression of ERVWE1 and ERVFRDE1 5'-long terminal repeats by DNA methylation and chromatin modifications. Immunoprecipitation of the provirus-associated chromatin revealed the H3K9 trimethylation at transcriptionally inactivated syncytins in HeLa cells. qRT-PCR analysis of non-spliced ERVWE1 and ERVFRDE1 mRNAs and respective env mRNAs detected efficient splicing of endogenously expressed RNAs in trophoblastic but not in non-placental cells. Pointing to the pathogenic potential of aberrantly expressed syncytin-1, we have found deregulation of transcription and splicing of the ERVWE1 in biopsies of testicular seminomas. Finally, ectopic expression experiments suggest the importance of proper chromatin context for the ERVWE1 splicing. Our results thus demonstrate that cell-specific retroviral splicing represents an additional epigenetic level controling the expression of endogenous retroviruses.


Assuntos
Retrovirus Endógenos , Epigênese Genética , Produtos do Gene env/genética , Proteínas da Gravidez/genética , Splicing de RNA , Transcrição Gênica , Linhagem Celular , Produtos do Gene env/metabolismo , Inativação Gênica , Glicoproteínas/genética , Glicoproteínas/metabolismo , Células HeLa , Histonas/metabolismo , Humanos , Masculino , Neoplasias Embrionárias de Células Germinativas/genética , Neoplasias Embrionárias de Células Germinativas/metabolismo , Proteínas da Gravidez/metabolismo , Provírus/genética , Provírus/metabolismo , RNA Mensageiro/metabolismo , Testículo/metabolismo
7.
Eur J Immunol ; 41(10): 2905-14, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21695691

RESUMO

Specific NK cell killer inhibitory receptor (KIR):HLA haplotype combinations have been associated with successful clearance of acute and chronic HCV infection. Whether an imbalance of activating NK cell receptors also contributes to the outcome of treatment of chronic HCV infection, however, is not known. We studied peripheral NK cell phenotype and function in 28 chronically viraemic HCV genotype I treatment-naïve patients who underwent treatment with pegylated IFN-α and ribavirin. At baseline, chronically infected patients with sustained virological response (SVR) had reduced CD56(bright) CD16(+/-) cell populations, increased CD56(dull) CD16(+) NK cell proportions, and lower expression of NKp30, DNAM-1, and CD85j. Similarly, reduced NK cell IFN-γ production but increased degranulation was observed among nonresponding (NR) patients. After treatment, CD56(bright) CD16(+/-) NK cell numbers increased in both SVR and NR patients, with a parallel significant increase in activating NKp30 molecule densities in SVR patients only. In vitro experiments using purified NK cells in the presence of rIL-2 and IFN-α confirmed upregulation of NKp30 and also of NKp46 and DNAM-1 in patients with subsequent SVR. Thus, differences in patient NK cell receptor expression and modulation during chronic HCV-1 infection are associated with subsequent outcome of standard treatment. Individual activating receptor expression/function integrates with KIR:HLA genotype carriage to determine the clearance of HCV infection upon treatment.


Assuntos
Antígenos de Diferenciação de Linfócitos T/metabolismo , Hepatite C Crônica/imunologia , Células Matadoras Naturais/imunologia , Receptor 1 Desencadeador da Citotoxicidade Natural/metabolismo , Receptor 3 Desencadeador da Citotoxicidade Natural/metabolismo , Adulto , Idoso , Antígenos CD/biossíntese , Antivirais/uso terapêutico , Antígeno CD56/biossíntese , Quimioterapia Combinada , Feminino , Hepacivirus/imunologia , Hepatite C Crônica/tratamento farmacológico , Hepatite C Crônica/virologia , Humanos , Interferon-alfa/uso terapêutico , Células Matadoras Naturais/metabolismo , Receptor B1 de Leucócitos Semelhante a Imunoglobulina , Masculino , Pessoa de Meia-Idade , Polietilenoglicóis/uso terapêutico , Receptores de IgG/biossíntese , Receptores Imunológicos/biossíntese , Proteínas Recombinantes/uso terapêutico , Ribavirina/uso terapêutico , Resultado do Tratamento , Viremia/imunologia
8.
Eur J Immunol ; 41(12): 3443-54, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21918970

RESUMO

The human butyrophilin (BTN) 3 or CD277 molecules belong to the B7 family members and are expressed in various immune cells such as T and NK cells. Here, we show that CD277 triggering considerably enhances TCR-induced cytokine production and cell proliferation, even when another co-stimulatory molecule, CD28, is engaged. These CD277-induced additive functional effects are in accordance with the detection of early T-cell activation events such as TCR-induced cell signaling being increased upon CD277 engagement. However, we found that CD277 triggering is not involved in CD16- or NKp46-induced NK cell activation. BTN3/CD277 comprises three structurally related members, BTN3A1, BTN3A2 and BTN3A3. CD277 antibodies recognize all isoforms and we describe a differential expression of BTN3 isoforms between T and NK cells that could explain differential CD277 functions between T and NK cells. Our results show that, while T cells express all BTN3/CD277 transcripts, NK cells express mostly BTN3A2, which lacks the B30.2 intracellular domain. Furthermore, NKp30-induced cytokine production is decreased by the specific engagement of BTN3A2, but not by BTN3A1 triggering. Thus, we provide new insights into the CD277 co-stimulatory pathway that may differentially participate in the regulation of various cell-mediated immune responses.


Assuntos
Antígenos CD/imunologia , Linfócitos T CD4-Positivos/imunologia , Células Matadoras Naturais/imunologia , Animais , Butirofilinas , Antígenos CD28/imunologia , Células COS , Linhagem Celular Transformada , Proliferação de Células , Chlorocebus aethiops , Citocinas/imunologia , Citocinas/metabolismo , Humanos , Interferon gama/imunologia , Ativação Linfocitária/imunologia , Receptor 3 Desencadeador da Citotoxicidade Natural/imunologia , Isoformas de Proteínas , Receptores de Antígenos de Linfócitos T/imunologia , Regulação para Cima
9.
Cytometry A ; 81(4): 332-42, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22278900

RESUMO

The development of polychromatic cytometry has contributed to significant progress in the field of human immunology. Although numerous functional studies of rare cell populations have been performed using this technology, here we used polychromatic cytometry to explore the dynamics of complex cellular systems implicated in innate immunity. We used PBMC stimulated with live influenza virus as an experimental model. We studied the time course of activation of PBMC, which contain DC, monocytes, and NK cells, all of which are, in addition to their innate immune properties, susceptible to Flu infection. We developed 12 color panels to investigate intracellular expression of IFN-α, TNF-α, IL-12, IL-6, IFN-γ, CD107, and influenza virus nucleoprotein simultaneously in these cell populations. These panels allowed reproducible determination of activation markers induced in DC after their direct exposure to various stimulations or in NK cells by indirect DC-mediated activation within the complex cellular environment. The ability to use a low number of cells and reduced quantities of reagents permitted us to perform kinetic experiments. The power of polychromatic cytometry associated with bioinformatic tools allowed us to analyze the multiple functional data generated as dynamic clustering maps. These maps present a readily understandable view of activation events induced in different populations of PBMC. In addition, it reveals new information on the coordination of the complex pathways induced and on the cellular interactions that sustained indirect DC-mediated NK cell activation. Our work shows that polychromatic cytometry is a tool for discoveries in unexplored complex cell systems, at the crossroads of immunology and virology. © 2012 International Society for Advancement of Cytometry.


Assuntos
Citometria de Fluxo/métodos , Animais , Células Cultivadas , Células Dendríticas/citologia , Células Dendríticas/metabolismo , Cães , Humanos , Imunidade Inata , Células Matadoras Naturais/citologia , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/metabolismo
10.
J Immunol ; 185(6): 3140-8, 2010 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-20693422

RESUMO

B and T lymphocyte attenuator (BTLA), like its relative programmed cell death-1 (PD-1), is a receptor that negatively regulates murine T cell activation. However, its expression and function on human T cells is currently unknown. We report in this study on the expression of BTLA in human T cell subsets as well as its regulation on virus-specific T cells during primary human CMV infection. BTLA is expressed on human CD4(+) T cells during different stages of differentiation, whereas on CD8(+) T cells, it is found on naive T cells and is progressively downregulated in memory and differentiated effector-type cells. During primary CMV infection, BTLA was highly induced on CMV-specific CD8(+) T cells immediately following their differentiation from naive cells. After control of CMV infection, BTLA expression went down on memory CD8(+) cells. Engagement of BTLA by mAbs blocked CD3/CD28-mediated T cell proliferation and Th1 and Th2 cytokine secretion. Finally, in vitro blockade of the BTLA pathway augmented, as efficient as anti-PD-1 mAbs, allogeneic as well as CMV-specific CD8(+) T cell proliferation. Thus, our results suggest that, like PD-1, BTLA provides a potential target for enhancing the functional capacity of CTLs in viral infections.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/virologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/virologia , Citomegalovirus/imunologia , Epitopos de Linfócito T/imunologia , Receptores Imunológicos/biossíntese , Receptores Imunológicos/genética , Animais , Antígenos CD/biossíntese , Antígenos CD/fisiologia , Proteínas Reguladoras de Apoptose/antagonistas & inibidores , Proteínas Reguladoras de Apoptose/biossíntese , Proteínas Reguladoras de Apoptose/fisiologia , Linfócitos T CD4-Positivos/patologia , Linfócitos T CD8-Positivos/patologia , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Células Cultivadas , Citomegalovirus/patogenicidade , Infecções por Citomegalovirus/imunologia , Infecções por Citomegalovirus/patologia , Infecções por Citomegalovirus/prevenção & controle , Citotoxicidade Imunológica/genética , Regulação para Baixo/genética , Regulação para Baixo/imunologia , Feminino , Humanos , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Receptor de Morte Celular Programada 1 , Receptores Imunológicos/antagonistas & inibidores , Fase de Repouso do Ciclo Celular/genética , Fase de Repouso do Ciclo Celular/imunologia , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/patologia , Linfócitos T Citotóxicos/virologia , Regulação para Cima/genética , Regulação para Cima/imunologia
11.
J Biol Chem ; 285(25): 19434-49, 2010 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-20413592

RESUMO

Bovine leukemia virus (BLV) proviral latency represents a viral strategy to escape the host immune system and allow tumor development. Besides the previously demonstrated role of histone deacetylation in the epigenetic repression of BLV expression, we showed here that BLV promoter activity was induced by several DNA methylation inhibitors (such as 5-aza-2'-deoxycytidine) and that overexpressed DNMT1 and DNMT3A, but not DNMT3B, down-regulated BLV promoter activity. Importantly, cytosine hypermethylation in the 5'-long terminal repeat (LTR) U3 and R regions was associated with true latency in the lymphoma-derived B-cell line L267 but not with defective latency in YR2 cells. Moreover, the virus-encoded transactivator Tax(BLV) decreased DNA methyltransferase expression levels, which could explain the lower level of cytosine methylation observed in the L267(LTaxSN) 5'-LTR compared with the L267 5'-LTR. Interestingly, DNA methylation inhibitors and Tax(BLV) synergistically activated BLV promoter transcriptional activity in a cAMP-responsive element (CRE)-dependent manner. Mechanistically, methylation at the -154 or -129 CpG position (relative to the transcription start site) impaired in vitro binding of CRE-binding protein (CREB) transcription factors to their respective CRE sites. Methylation at -129 CpG alone was sufficient to decrease BLV promoter-driven reporter gene expression by 2-fold. We demonstrated in vivo the recruitment of CREB/CRE modulator (CREM) and to a lesser extent activating transcription factor-1 (ATF-1) to the hypomethylated CRE region of the YR2 5'-LTR, whereas we detected no CREB/CREM/ATF recruitment to the hypermethylated corresponding region in the L267 cells. Altogether, these findings suggest that site-specific DNA methylation of the BLV promoter represses viral transcription by directly inhibiting transcription factor binding, thereby contributing to true proviral latency.


Assuntos
Fator 1 Ativador da Transcrição/metabolismo , Linfócitos B/metabolismo , Linfócitos B/virologia , Modulador de Elemento de Resposta do AMP Cíclico/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Citosina/metabolismo , Metilação de DNA , DNA/genética , Vírus da Leucemia Bovina/genética , Linfoma/metabolismo , Regiões Promotoras Genéticas , Cromatina/química , AMP Cíclico/metabolismo , Citosina/química , Ensaio de Imunoadsorção Enzimática/métodos , Humanos , Plasmídeos/metabolismo , Sulfitos/química
12.
PLoS Pathog ; 5(8): e1000554, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19696893

RESUMO

DNA methylation of retroviral promoters and enhancers localized in the provirus 5' long terminal repeat (LTR) is considered to be a mechanism of transcriptional suppression that allows retroviruses to evade host immune responses and antiretroviral drugs. However, the role of DNA methylation in the control of HIV-1 latency has never been unambiguously demonstrated, in contrast to the apparent importance of transcriptional interference and chromatin structure, and has never been studied in HIV-1-infected patients. Here, we show in an in vitro model of reactivable latency and in a latent reservoir of HIV-1-infected patients that CpG methylation of the HIV-1 5' LTR is an additional epigenetic restriction mechanism, which controls resistance of latent HIV-1 to reactivation signals and thus determines the stability of the HIV-1 latency. CpG methylation acts as a late event during establishment of HIV-1 latency and is not required for the initial provirus silencing. Indeed, the latent reservoir of some aviremic patients contained high proportions of the non-methylated 5' LTR. The latency controlled solely by transcriptional interference and by chromatin-dependent mechanisms in the absence of significant promoter DNA methylation tends to be leaky and easily reactivable. In the latent reservoir of HIV-1-infected individuals without detectable plasma viremia, we found HIV-1 promoters and enhancers to be hypermethylated and resistant to reactivation, as opposed to the hypomethylated 5' LTR in viremic patients. However, even dense methylation of the HIV-1 5'LTR did not confer complete resistance to reactivation of latent HIV-1 with some histone deacetylase inhibitors, protein kinase C agonists, TNF-alpha, and their combinations with 5-aza-2deoxycytidine: the densely methylated HIV-1 promoter was most efficiently reactivated in virtual absence of T cell activation by suberoylanilide hydroxamic acid. Tight but incomplete control of HIV-1 latency by CpG methylation might have important implications for strategies aimed at eradicating HIV-1 infection.


Assuntos
Ilhas de CpG , Metilação de DNA , HIV-1/fisiologia , Latência Viral/fisiologia , Adulto , Idoso , Linfócitos T CD4-Positivos/metabolismo , Cromatina/fisiologia , Células Clonais , Clonagem Molecular , Feminino , Infecções por HIV/metabolismo , Repetição Terminal Longa de HIV , Soronegatividade para HIV , HIV-1/genética , Humanos , Células Jurkat , Masculino , Pessoa de Meia-Idade , Regiões Promotoras Genéticas , Provírus/genética , Provírus/metabolismo , Viremia/genética , Viremia/metabolismo
13.
Med Sci (Paris) ; 27(10): 842-9, 2011 Oct.
Artigo em Francês | MEDLINE | ID: mdl-22027421

RESUMO

Key players on the immunosurveillance program, T cells are regulated by their surface receptors such as T-cell receptor (TCR), and costimulatory molecules, optimizing T-cell activation. Some of these costimulatory molecules, such as the cytotoxic T-lymphocyte antigen 4 (CTLA-4), induce inhibitory effects on T cells. By "inhibiting the inhibitor" CTLA-4-blocking monoclonal antibodies represent a novel class of weapons against cancers. To better understand the promising future and the limits of this immunotherapy, this review dissects the molecular inhibitory mechanisms induced by CTLA-4 in T cells.


Assuntos
Antígeno CTLA-4/imunologia , Ativação Linfocitária/imunologia , Monitorização Imunológica , Tolerância Periférica/imunologia , Linfócitos T Citotóxicos/imunologia , Linfócitos T Reguladores/imunologia , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/uso terapêutico , Células Apresentadoras de Antígenos/imunologia , Antineoplásicos/imunologia , Antineoplásicos/uso terapêutico , Antígeno CTLA-4/química , Antígeno CTLA-4/genética , Receptores Coestimuladores e Inibidores de Linfócitos T/imunologia , Humanos , Imunoterapia , Camundongos , Camundongos Knockout , Modelos Imunológicos , Neoplasias Experimentais/imunologia , Neoplasias Experimentais/terapia , Proteínas Quinases/fisiologia , Estrutura Terciária de Proteína , Transporte Proteico , Transdução de Sinais/fisiologia , Relação Estrutura-Atividade , Linfócitos T Citotóxicos/metabolismo , Linfócitos T Reguladores/metabolismo
14.
Viruses ; 13(12)2021 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-34960710

RESUMO

Chronic hepatitis caused by infection with the Hepatitis B virus is a life-threatening condition. In fact, 1 million people die annually due to liver cirrhosis or hepatocellular carcinoma. Recently, several studies demonstrated a molecular connection between the host DNA damage response (DDR) pathway and HBV replication and reactivation. Here, we investigated the role of Ataxia-telangiectasia-mutated (ATM) and Ataxia telangiectasia and Rad3-related (ATR) PI3-kinases in phosphorylation of the HBV core protein (HBc). We determined that treatment of HBc-expressing hepatocytes with genotoxic agents, e.g., etoposide or hydrogen peroxide, activated the host ATM-Chk2 pathway, as determined by increased phosphorylation of ATM at Ser1981 and Chk2 at Thr68. The activation of ATM led, in turn, to increased phosphorylation of cytoplasmic HBc at serine-glutamine (SQ) motifs located in its C-terminal domain. Conversely, down-regulation of ATM using ATM-specific siRNAs or inhibitor effectively reduced etoposide-induced HBc phosphorylation. Detailed mutation analysis of S-to-A HBc mutants revealed that S170 (S168 in a 183-aa HBc variant) is the primary site targeted by ATM-regulated phosphorylation. Interestingly, mutation of two major phosphorylation sites involving serines at positions 157 and 164 (S155 and S162 in a 183-aa HBc variant) resulted in decreased etoposide-induced phosphorylation, suggesting that the priming phosphorylation at these serine-proline (SP) sites is vital for efficient phosphorylation of SQ motifs. Notably, the mutation of S172 (S170 in a 183-aa HBc variant) had the opposite effect and resulted in massively up-regulated phosphorylation of HBc, particularly at S170. Etoposide treatment of HBV infected HepG2-NTCP cells led to increased levels of secreted HBe antigen and intracellular HBc protein. Together, our studies identified HBc as a substrate for ATM-mediated phosphorylation and mapped the phosphorylation sites. The increased expression of HBc and HBe antigens in response to genotoxic stress supports the idea that the ATM pathway may provide growth advantage to the replicating virus.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Dano ao DNA , Vírus da Hepatite B/fisiologia , Hepatócitos/virologia , Proteínas do Core Viral/metabolismo , Motivos de Aminoácidos , Quinase do Ponto de Checagem 2/metabolismo , Citoplasma/metabolismo , Citoplasma/virologia , Etoposídeo/farmacologia , Células Hep G2 , Antígenos E da Hepatite B/metabolismo , Vírus da Hepatite B/efeitos dos fármacos , Humanos , Peróxido de Hidrogênio/farmacologia , Fosforilação , Serina/metabolismo , Transativadores/genética , Transativadores/metabolismo , Proteínas do Core Viral/química , Proteínas Virais Reguladoras e Acessórias/genética , Proteínas Virais Reguladoras e Acessórias/metabolismo , Replicação Viral/efeitos dos fármacos
15.
Cancers (Basel) ; 13(9)2021 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-33923020

RESUMO

The tumorigenic potential of mouse polyomavirus (MPyV) has been studied for decades in cell culture models and has been mainly attributed to nonstructural middle T antigen (MT), which acts as a scaffold signal adaptor, activates Src tyrosine kinases, and possesses transforming ability. We hypothesized that MPyV could also transform mouse cells independent of MT via a Toll-like receptor 4 (TLR4)-mediated inflammatory mechanism. To this end, we investigated the interaction of MPyV with TLR4 in mouse embryonic fibroblasts (MEFs) and 3T6 cells, resulting in secretion of interleukin 6 (IL-6), independent of active viral replication. TLR4 colocalized with MPyV capsid protein VP1 in MEFs. Neither TLR4 activation nor recombinant IL-6 inhibited MPyV replication in MEFs and 3T6 cells. MPyV induced STAT3 phosphorylation through both direct and MT-dependent and indirect and TLR4/IL-6-dependent mechanisms. We demonstrate that uninfected mouse fibroblasts exposed to the cytokine environment from MPyV-infected fibroblasts upregulated the expressions of MCP-1, CCL-5, and α-SMA. Moreover, the cytokine microenvironment increased the invasiveness of MEFs and CT26 carcinoma cells. Collectively, TLR4 recognition of MPyV induces a cytokine environment that promotes the cancer-associated fibroblast (CAF)-like phenotype in noninfected fibroblasts and increases cell invasiveness.

16.
Sci Rep ; 10(1): 12767, 2020 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-32728070

RESUMO

Recombinant interferon-α (IFN-α) treatment functionally cures chronic hepatitis B virus (HBV) infection in some individuals and suppresses virus replication in hepatocytes infected in vitro. We studied the antiviral effect of conditioned media (CM) from peripheral blood mononuclear cells (PBMCs) stimulated with agonists of Toll-like receptors (TLRs) 2, 7, 8 and 9. We found that CM from PBMCs stimulated with dual-acting TLR7/8 (R848) and TLR2/7 (CL413) agonists were more potent drivers of inhibition of HBe and HBs antigen secretion from HBV-infected primary human hepatocytes (PHH) than CM from PBMCs stimulated with single-acting TLR7 (CL264) or TLR9 (CpG-B) agonists. Inhibition of HBV in PHH did not correlate with the quantity of PBMC-produced IFN-α, but it was a complex function of multiple secreted cytokines. More importantly, we found that the CM that efficiently inhibited HBV production in freshly isolated PHH via various cytokine repertoires and mechanisms did not reduce covalently closed circular (ccc)DNA levels. We confirmed our data with a cell culture model based on HepG2-NTCP cells and the plasmacytoid dendritic cell line GEN2.2. Collectively, our data show the importance of dual-acting TLR agonists inducing broad cytokine repertoires. The development of poly-specific TLR agonists provides novel opportunities towards functional HBV cure.


Assuntos
Hepatite B Crônica/virologia , Hepatócitos/virologia , Leucócitos Mononucleares/metabolismo , Receptores Toll-Like/agonistas , Replicação Viral/efeitos dos fármacos , Meios de Cultivo Condicionados/farmacologia , Citocinas/metabolismo , DNA Circular/metabolismo , Sistemas de Liberação de Medicamentos , Células Hep G2 , Vírus da Hepatite B/fisiologia , Humanos , Imunidade Inata/efeitos dos fármacos , Interferon-alfa/metabolismo , Receptores Toll-Like/metabolismo
17.
Cells ; 9(12)2020 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-33256078

RESUMO

Hepatitis B virus (HBV) core protein (HBc) plays many roles in the HBV life cycle, such as regulation of transcription, RNA encapsidation, reverse transcription, and viral release. To accomplish these functions, HBc interacts with many host proteins and undergoes different post-translational modifications (PTMs). One of the most common PTMs is ubiquitination, which was shown to change the function, stability, and intracellular localization of different viral proteins, but the role of HBc ubiquitination in the HBV life cycle remains unknown. Here, we found that HBc protein is post-translationally modified through K29-linked ubiquitination. We performed a series of co-immunoprecipitation experiments with wild-type HBc, lysine to arginine HBc mutants and wild-type ubiquitin, single lysine to arginine ubiquitin mutants, or single ubiquitin-accepting lysine constructs. We observed that HBc protein could be modified by ubiquitination in transfected as well as infected hepatoma cells. In addition, ubiquitination predominantly occurred on HBc lysine 7 and the preferred ubiquitin chain linkage was through ubiquitin-K29. Mass spectrometry (MS) analyses detected ubiquitin protein ligase E3 component N-recognin 5 (UBR5) as a potential E3 ubiquitin ligase involved in K29-linked ubiquitination. These findings emphasize that ubiquitination of HBc may play an important role in HBV life cycle.


Assuntos
Vírus da Hepatite B/genética , Processamento de Proteína Pós-Traducional/genética , Ubiquitinação/genética , Proteínas Virais/genética , Arginina/genética , Carcinoma Hepatocelular/genética , Linhagem Celular , Linhagem Celular Tumoral , Células HEK293 , Células Hep G2 , Hepatite B/genética , Humanos , Lisina/genética , Ubiquitina/genética , Ubiquitina-Proteína Ligases/genética
18.
Viruses ; 10(4)2018 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-29597250

RESUMO

Depletion and functional impairment of circulating plasmacytoid dendritic cells (pDCs) are characteristic attributes of HIV-1-infection. The mechanism of dysfunction of pDCs is unclear. Here, we studied the development of phenotype of pDCs in a cohort of HIV-1-infected individuals monitored before the initiation and during a 9-month follow up with antiretroviral therapy (ART). Using polychromatic flow cytometry, we detected significantly higher pDC-surface expression of the HIV-1 receptor CD4, regulatory receptor BDCA-2, Fcγ receptor CD32, pDC dysfunction marker TIM-3, and the marker of killer pDC, TRAIL, in treatment-naïve HIV-1-infected individuals before initiation of ART when compared to healthy donors. After 9 months of ART, all of these markers approached but did not reach the expression levels observed in healthy donors. We found that the rate of decline in HIV-1 RNA level over the first 3 months of ART negatively correlated with the expression of TIM-3 on pDCs. We conclude that immunogenic phenotype of pDCs is not significantly restored after sustained suppression of HIV-1 RNA level in ART-treated patients and that the level of the TIM-3 expressed on pDCs in treatment naïve patients could be a predictive marker of the rate of decline in the HIV-1 RNA level during ART.


Assuntos
Células Dendríticas/metabolismo , Expressão Gênica , Infecções por HIV/genética , Infecções por HIV/virologia , HIV-1 , Receptor Celular 2 do Vírus da Hepatite A/genética , Adulto , Terapia Antirretroviral de Alta Atividade , Biomarcadores , Contagem de Linfócito CD4 , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Células Dendríticas/imunologia , Infecções por HIV/tratamento farmacológico , Infecções por HIV/imunologia , HIV-1/imunologia , Humanos , Pessoa de Meia-Idade , RNA Viral , Carga Viral , Adulto Jovem
19.
Front Immunol ; 9: 364, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29535732

RESUMO

Recent studies have reported that the crosslinking of regulatory receptors (RRs), such as blood dendritic cell antigen 2 (BDCA-2) (CD303) or ILT7 (CD85g), of plasmacytoid dendritic cells (pDCs) efficiently suppresses the production of type I interferons (IFN-I, α/ß/ω) and other cytokines in response to toll-like receptor 7 and 9 (TLR7/9) ligands. The exact mechanism of how this B cell receptor (BCR)-like signaling blocks TLR7/9-mediated IFN-I production is unknown. Here, we stimulated BCR-like signaling by ligation of RRs with BDCA-2 and ILT7 mAbs, hepatitis C virus particles, or BST2 expressing cells. We compared BCR-like signaling in proliferating pDC cell line GEN2.2 and in primary pDCs from healthy donors, and addressed the question of whether pharmacological targeting of BCR-like signaling can antagonize RR-induced pDC inhibition. To this end, we tested the TLR9-mediated production of IFN-I and proinflammatory cytokines in pDCs exposed to a panel of inhibitors of signaling molecules involved in BCR-like, MAPK, NF-ĸB, and calcium signaling pathways. We found that MEK1/2 inhibitors, PD0325901 and U0126 potentiated TLR9-mediated production of IFN-I in GEN2.2 cells. More importantly, MEK1/2 inhibitors significantly increased the TLR9-mediated IFN-I production blocked in both GEN2.2 cells and primary pDCs upon stimulation of BCR-like or phorbol 12-myristate 13-acetate-induced protein kinase C (PKC) signaling. Triggering of BCR-like and PKC signaling in pDCs resulted in an upregulation of the expression and phoshorylation of c-FOS, a downstream gene product of the MEK1/2-ERK pathway. We found that the total level of c-FOS was higher in proliferating GEN2.2 cells than in the resting primary pDCs. The PD0325901-facilitated restoration of the TLR9-mediated IFN-I production correlated with the abrogation of MEK1/2-ERK-c-FOS signaling. These results indicate that the MEK1/2-ERK pathway inhibits TLR9-mediated type I IFN production in pDCs and that pharmacological targeting of MEK1/2-ERK signaling could be a strategy to overcome immunotolerance of pDCs and re-establish their immunogenic activity.


Assuntos
Linfócitos B/imunologia , Células Dendríticas/fisiologia , MAP Quinase Quinase 1/metabolismo , MAP Quinase Quinase 2/metabolismo , Receptores de Antígenos de Linfócitos B/metabolismo , Sinalização do Cálcio , Linhagem Celular , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Interferon Tipo I/metabolismo , Sistema de Sinalização das MAP Quinases , NF-kappa B/metabolismo , Proteína Quinase C/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Receptores de Antígenos de Linfócitos B/genética , Receptor Toll-Like 9/metabolismo
20.
Front Immunol ; 8: 394, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28439271

RESUMO

The innate immune cells sense microbial infection and self-ligands by pathogen recognition receptors (PRRs), such as toll-like receptors (TLRs) and regulatory receptors (RRs), associated with immunoreceptor tyrosine-based activation motif (ITAM). Rapid activation and concerted action of PRRs signaling and feedback inhibitory mechanisms must be engaged to ensure the host defense functions and to prevent cytotoxicity associated with excessive activation. ITAM-associated RRs can generate stimulatory or, paradoxically, inhibitory signals. The network of ITAM-associated RR, together with TLR-signaling pathways, are responsible for immunogenic or tolerogenic responses of macrophages and dendritic cells to their microenvironment. In macrophages, TLR4 signaling is inhibited by low-avidity ligation of ITAM-associated receptors, while high-avidity ligation of ITAM-associated receptors results in potentiation of TLR4 signaling together with resistance to extracellular cytokine microenvironment signals. In contrast to macrophages, TLR7/9 signaling in plasmacytoid DCs (pDCs) is inhibited by high-avidity ligation of ITAM-associated RR, while low-avidity ligation does not show any effect. Surprisingly, interference of ITAM-associated receptor signaling with TLR pathways has not been reported in conventional dendritic cells. Here, we present an overview of molecular mechanisms acting at the crossroads of TLR and ITAM-signaling pathways and address the question of how the high-avidity engagement of the ITAM-associated receptors in pDCs inhibits TLR7/9 signaling. Cellular context and spatiotemporal engagement of ITAM- and TLR-signaling pathways are responsible for different outcomes of macrophage versus pDC activation. While the cross-regulation of cytokine and TLR signaling, together with antigen presentation, are the principal functions of ITAM-associated RR in macrophages, the major role of these receptors in pDCs seems to be related to inhibition of cytokine production and reestablishment of a tolerogenic state following pDC activation. Pharmacologic targeting of TLR and ITAM signaling could be an attractive new therapeutic approach for treatment of chronic infections, cancer, and autoimmune and inflammatory diseases related to pDCs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA