RESUMO
Several bacteriophages that infect different strains of the thermophilic bacterium Rhodothermus marinus were isolated and their infection pattern was studied. One phage, named RM378 was cultivated and characterized. The RM378 genome was also sequenced and analyzed. The phage was grouped as a member of the Myoviridae family with A2 morphology. It had a moderately elongated head, with dimensions of 85 and 95 nm between opposite apices and a 150 nm long tail, attached with a connector to the head. RM378 showed a virulent behavior that followed a lytic cycle of infection. It routinely gave lysates with 10(11) pfu/ml, and sometimes reached titers as high as 10(13) pfu/ml. The titer remained stable up to 65 °C but the phage lost viability when incubated at higher temperatures. Heating for 30 min at 96 °C lowered the titer by 10(4). The RM378 genome consisted of ds DNA of 129.908 bp with a GC ratio of 42.0% and contained about 120 ORFs. A few structural proteins, such as the major head protein corresponding to the gp23 in T4, could be identified. Only 29 gene products as probable homologs to other proteins of known function could be predicted, with most showing only low similarity to known proteins in other bacteriophages. These and other studies based on sequence analysis of a large number of phage genomes showed RM378 to be distantly related to all other known T4-like phages.
Assuntos
Genoma Viral , Temperatura Alta , Myoviridae/isolamento & purificação , Rhodothermus/virologia , Adaptação Fisiológica , Sequência de Aminoácidos , Sequência de Bases , Dados de Sequência Molecular , Myoviridae/genética , Myoviridae/crescimento & desenvolvimento , Rhodothermus/fisiologia , Proteínas Virais/química , Proteínas Virais/genética , Proteínas Virais/metabolismoRESUMO
BACKGROUND: Approximately half of the mitochondrial genome inherent within 546 individual Atlantic salmon (Salmo salar) derived from across the species' North Atlantic range, was selectively amplified with a novel combination of standard PCR and pyro-sequencing in a single run using 454 Titanium FLX technology (Roche, 454 Life Sciences). A unique combination of barcoded primers and a partitioned sequencing plate was employed to designate each sequence read to its original sample. The sequence reads were aligned according to the S. salar mitochondrial reference sequence (NC_001960.1), with the objective of identifying single nucleotide polymorphisms (SNPs). They were validated if they met with the following three stringent criteria: (i) sequence reads were produced from both DNA strands; (ii) SNPs were confirmed in a minimum of 90% of replicate sequence reads; and (iii) SNPs occurred in more than one individual. RESULTS: Pyrosequencing generated a total of 179,826,884 bp of data, and 10,765 of the total 10,920 S. salar sequences (98.6%) were assigned back to their original samples. The approach taken resulted in a total of 216 SNPs and 2 indels, which were validated and mapped onto the S. salar mitochondrial genome, including 107 SNPs and one indel not previously reported. An average of 27.3 sequence reads with a standard deviation of 11.7 supported each SNP per individual. CONCLUSION: The study generated a mitochondrial SNP panel from a large sample group across a broad geographical area, reducing the potential for ascertainment bias, which has hampered previous studies. The SNPs identified here validate those identified in previous studies, and also contribute additional potentially informative loci for the future study of phylogeography and evolution in the Atlantic salmon. The overall success experienced with this novel application of HT sequencing of targeted regions suggests that the same approach could be successfully applied for SNP mining in other species.
Assuntos
DNA Mitocondrial/genética , Sequenciamento de Nucleotídeos em Larga Escala , Polimorfismo de Nucleotídeo Único , Salmo salar/genética , Animais , Mapeamento Cromossômico , Biblioteca Gênica , Genoma Mitocondrial , Análise de Sequência de DNARESUMO
Monoheme cytochromes of the C-type are involved in a large number of electron transfer processes, which play an essential role in multiple pathways, such as respiratory chains, either aerobic or anaerobic, and the photosynthetic electron transport chains. This study reports the biochemical characterization and the crystallographic structure, at 1.23 A resolution, of a monoheme cytochrome c from the thermohalophilic bacterium Rhodothermus marinus. In addition to an alpha-helical core folded around the heme, common for this type of cytochrome, the X-ray structure reveals one unusual alpha-helix and a unique N-terminal extension, which wraps around the back of the molecule. Based on a thorough structural and amino acid sequence comparison, we propose R. marinus cytochrome c as the first characterized member of a new class of C-type cytochromes.
Assuntos
Proteínas de Bactérias/química , Citocromos c/química , Rhodothermus/enzimologia , Aerobiose/fisiologia , Anaerobiose/fisiologia , Cristalografia por Raios X , Transporte de Elétrons/fisiologia , Heme/química , Estrutura Secundária de Proteína/fisiologia , Estrutura Terciária de Proteína/fisiologiaRESUMO
The biochemical and genetic search for a bc(1) complex in Rhodothermus marinus was always fruitless; however, a functional equivalent, i.e. having quinol:cytochrome c oxidoreductase activity was characterized. Now, with the sequencing of R. marinus genome, it was possible to assign the N-terminal sequences of several proteins of this complex to its coding genes. The alternative complex III from R. marinus has the same genomic organization of the so-called MFIcc complexes, proposed to be oxidoreductases of the respiratory and photosynthetic electron transfer chains. In this report, we establish undoubtedly the existence of an alternative complex III, a functional substitute of the bc(1) complex, by its identification at both the biochemical and genomic level.
Assuntos
Proteínas de Bactérias/química , Complexo III da Cadeia de Transporte de Elétrons/química , Rhodothermus/enzimologia , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Complexo III da Cadeia de Transporte de Elétrons/classificação , Complexo III da Cadeia de Transporte de Elétrons/genética , Dados de Sequência Molecular , Família Multigênica , Subunidades Proteicas/química , Subunidades Proteicas/genéticaRESUMO
We have recently sequenced the genome of a novel thermophilic bacteriophage designated as TS2126 that infects the thermophilic eubacterium Thermus scotoductus. One of the annotated open reading frames (ORFs) shows homology to T4 RNA ligase 1, an enzyme of great importance in molecular biology, owing to its ability to ligate single-stranded nucleic acids. The ORF was cloned, and recombinant protein was expressed, purified and characterized. The recombinant enzyme ligates single-stranded nucleic acids in an ATP-dependent manner and is moderately thermostable. The recombinant enzyme exhibits extremely high activity and high ligation efficiency. It can be used for various molecular biology applications including RNA ligase-mediated rapid amplification of cDNA ends (RLM-RACE). The TS2126 RNA ligase catalyzed both inter- and intra-molecular single-stranded DNA ligation to >50% completion in a matter of hours at an elevated temperature, although favoring intra-molecular ligation on RNA and single-stranded DNA substrates. The properties of TS2126 RNA ligase 1 makes it very attractive for processes like adaptor ligation, and single-stranded solid phase gene synthesis.
Assuntos
Bacteriófagos/enzimologia , DNA de Cadeia Simples/metabolismo , RNA Ligase (ATP)/metabolismo , Sequência de Aminoácidos , Estabilidade Enzimática , Dados de Sequência Molecular , RNA Ligase (ATP)/genética , RNA Ligase (ATP)/isolamento & purificação , Alinhamento de Sequência , Temperatura , Thermus/virologiaRESUMO
Thermophilic viruses represent a novel source of genetic material and enzymes with great potential for use in biotechnology. We have isolated a number of thermophilic viruses from geothermal areas in Iceland, and by combining high throughput genome sequencing and state of the art bioinformatics we have identified a number of genes with potential use in biotechnology. We have also demonstrated the existence of thermostable counterparts of previously known bacteriophage enzymes. Here we describe a thermostable RNA ligase 1 from the thermophilic bacteriophage RM378 that infects the thermophilic eubacterium Rhodothermus marinus. The RM378 RNA ligase 1 has a temperature optimum of 60-64 degrees C and it ligates both RNA and single-stranded DNA. Its thermostability and ability to work under conditions of high temperature where nucleic acid secondary structures are removed makes it an ideal enzyme for RNA ligase-mediated rapid amplification of cDNA ends (RLM-RACE), and other RNA and DNA ligation applications.
Assuntos
Bacteriófagos/enzimologia , RNA Ligase (ATP)/metabolismo , Rhodothermus/virologia , Proteínas Virais/metabolismo , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Bacteriófagos/genética , Biotecnologia , Clonagem Molecular , DNA de Cadeia Simples/metabolismo , Estabilidade Enzimática , Temperatura Alta , Concentração de Íons de Hidrogênio , Dados de Sequência Molecular , RNA/metabolismo , RNA Ligase (ATP)/química , RNA Ligase (ATP)/genética , RNA Ligase (ATP)/isolamento & purificação , Alinhamento de Sequência , Especificidade por SubstratoRESUMO
Phage vB_Tsc2631 infects the extremophilic bacterium Thermus scotoductus MAT2631 and uses the Ts2631 endolysin for the release of its progeny. The Ts2631 endolysin is the first endolysin from thermophilic bacteriophage with an experimentally validated catalytic site. In silico analysis and computational modelling of the Ts2631 endolysin structure revealed a conserved Zn2+ binding site (His30, Tyr58, His131 and Cys139) similar to Zn2+ binding site of eukaryotic peptidoglycan recognition proteins (PGRPs). We have shown that the Ts2631 endolysin lytic activity is dependent on divalent metal ions (Zn2+ and Ca2+). The Ts2631 endolysin substitution variants H30N, Y58F, H131N and C139S dramatically lost their antimicrobial activity, providing evidence for the role of the aforementioned residues in the lytic activity of the enzyme. The enzyme has proven to be not only thermoresistant, retaining 64.8% of its initial activity after 2 h at 95°C, but also highly thermodynamically stable (Tm = 99.82°C, ΔHcal = 4.58 × 10(4) cal mol(-1)). Substitutions of histidine residues (H30N and H131N) and a cysteine residue (C139S) resulted in variants aggregating at temperatures ≥75°C, indicating a significant role of these residues in enzyme thermostability. The substrate spectrum of the Ts2631 endolysin included extremophiles of the genus Thermus but also Gram-negative mesophiles, such as Escherichia coli, Salmonella panama, Pseudomonas fluorescens and Serratia marcescens. The broad substrate spectrum and high thermostability of this endolysin makes it a good candidate for use as an antimicrobial agent to combat Gram-negative pathogens.
Assuntos
Bacteriófagos/enzimologia , Domínio Catalítico , Endopeptidases/química , Endopeptidases/metabolismo , Thermus/virologia , Sequência de Aminoácidos , Bacteriófagos/fisiologia , Cátions Bivalentes/farmacologia , Estabilidade Enzimática , Modelos Moleculares , Dados de Sequência Molecular , Cloreto de Sódio/farmacologia , Especificidade por Substrato , TemperaturaRESUMO
Due to an improved understanding of past climatological conditions, it has now become possible to study the potential concordance between former climatological models and present-day genetic structure. Genetic variability was assessed in 26 samples from different rivers of Atlantic salmon in Iceland (total of 2,352 individuals), using 15 microsatellite loci. F-statistics revealed significant differences between the majority of the populations that were sampled. Bayesian cluster analyses using both prior information and no prior information on sampling location revealed the presence of two distinguishable genetic pools - namely, the Northern (Group 1) and Southern (Group 2) regions of Iceland. Furthermore, the random permutation of different allele sizes among allelic states revealed a significant mutational component to the genetic differentiation at four microsatellite loci (SsaD144, Ssa171, SSsp2201 and SsaF3), and supported the proposition of a historical origin behind the observed variation. The estimated time of divergence, using two different ABC methods, suggested that the observed genetic pattern originated from between the Last Glacial Maximum to the Younger Dryas, which serves as additional evidence of the relative immaturity of Icelandic fish populations, on account of the re-colonisation of this young environment following the Last Glacial Maximum. Additional analyses suggested the presence of several genetic entities which were likely to originate from the original groups detected.
Assuntos
Variação Genética , Camada de Gelo , Rios , Salmo salar/genética , Animais , Teorema de Bayes , Clima , Mudança Climática , Análise por Conglomerados , Genética Populacional , Genótipo , Islândia , Repetições de Microssatélites/genética , Modelos Genéticos , Filogenia , Salmo salar/classificaçãoRESUMO
The recA gene of newly discovered Thermus thermophilus MAT72 phage Tt72 (Myoviridae) was cloned and overexpressed in Escherichia coli. The 1020-bp gene codes for a 339-amino-acid polypeptide with an Mr of 38,155 which shows 38.7% positional identity to the E. coli RecA protein. When expressed in E. coli, the Tt72 recA gene did not confer the ability to complement the ultraviolet light (254nm) sensitivity of an E. coli recA mutant. Tt72 RecA protein has been purified with good yield to catalytic and electrophoretic homogeneity using a three-step chromatography procedure. Biochemical characterization indicated that the protein can pair and promote ATP-dependent strand exchange reaction resulting in formation of a heteroduplex DNA at 60°C under conditions otherwise optimal for E. coli RecA. When the Tt72 RecA protein was included in a standard PCR-based DNA amplification reaction, the specificity of the PCR assays was significantly improved by eliminating non-specific products.
Assuntos
Myoviridae/genética , Reação em Cadeia da Polimerase/métodos , Recombinases Rec A/genética , Proteínas Recombinantes/genética , Thermus thermophilus/genética , Proteínas Virais/genética , Sequência de Aminoácidos , DNA Viral/genética , Escherichia coli/genética , Dados de Sequência Molecular , Recombinases Rec A/isolamento & purificação , Recombinases Rec A/metabolismo , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Proteínas Virais/isolamento & purificação , Proteínas Virais/metabolismoRESUMO
We report the development of new PCR assays and loading panels for the Atlantic salmon using 15 microsatellite loci. A total of 8, 3 and 4 loci were coamplified in three separate PCRs using labelled primers and loaded on the ABI DNA analyzer in two separate panels. Amplified alleles were clearly typed, and easily interpretable results were obtained. The method was successfully applied in different laboratories, even when different types of DNA polymerase were employed. The method is useful for analysing paternity, population genetics and conservation as well as for selective breeding programmes.
RESUMO
BACKGROUND: International fish trade reached an import value of 62.8 billion Euro in 2006, of which 44.6% are covered by the European Union. Species identification is a key problem throughout the life cycle of fishes: from eggs and larvae to adults in fisheries research and control, as well as processed fish products in consumer protection. METHODOLOGY/PRINCIPAL FINDINGS: This study aims to evaluate the applicability of the three mitochondrial genes 16S rRNA (16S), cytochrome b (cyt b), and cytochrome oxidase subunit I (COI) for the identification of 50 European marine fish species by combining techniques of "DNA barcoding" and microarrays. In a DNA barcoding approach, neighbour Joining (NJ) phylogenetic trees of 369 16S, 212 cyt b, and 447 COI sequences indicated that cyt b and COI are suitable for unambiguous identification, whereas 16S failed to discriminate closely related flatfish and gurnard species. In course of probe design for DNA microarray development, each of the markers yielded a high number of potentially species-specific probes in silico, although many of them were rejected based on microarray hybridisation experiments. None of the markers provided probes to discriminate the sibling flatfish and gurnard species. However, since 16S-probes were less negatively influenced by the "position of label" effect and showed the lowest rejection rate and the highest mean signal intensity, 16S is more suitable for DNA microarray probe design than cty b and COI. The large portion of rejected COI-probes after hybridisation experiments (>90%) renders the DNA barcoding marker as rather unsuitable for this high-throughput technology. CONCLUSIONS/SIGNIFICANCE: Based on these data, a DNA microarray containing 64 functional oligonucleotide probes for the identification of 30 out of the 50 fish species investigated was developed. It represents the next step towards an automated and easy-to-handle method to identify fish, ichthyoplankton, and fish products.
Assuntos
Peixes/classificação , Peixes/genética , Animais , Citocromos b/genética , DNA/genética , Código de Barras de DNA Taxonômico , DNA Ribossômico/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Proteínas de Peixes/genética , Dados de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , FilogeniaRESUMO
Cultivation and culture-independent techniques were used to describe the geothermal ecosystem of the Blue Lagoon in Iceland. The lagoon contains both seawater and freshwater of geothermal origin and is extremely high in silica content. Water samples were collected repeatedly in summer and autumn in 2003 and 2005 and in winter 2006 were analyzed for species composition. The study revealed the typical traits of an extreme ecosystem characterized by dominating species and other species represented in low numbers. A total of 35 taxa were identified. The calculated biodiversity index of the samples was 2.1-2.5. The majority (83%) of analyzed taxa were closely related to bacteria of marine and geothermal origin reflecting a marine character of the ecosystem and the origin of the Blue Lagoon hydrothermal fluid. A high ratio (63%) of analyzed taxa represented putative novel bacterial species. The majority (71%) of analyzed clones were Alphaproteobacteria, of which 80% belonged to the Roseobacter lineage within the family of Rhodobacteraceae. Of seven cultivated species, the two most abundant ones belonged to this lineage. Silicibacter lacuscaerulensis was confirmed as a dominating species in the Blue Lagoon. One group of isolates represented a recently identified species within the genus of Nitratireductor within Rhizobiales. This study implies an annually stable and seasonally dynamic ecosystem in the Blue Lagoon.
Assuntos
Bactérias/isolamento & purificação , Biodiversidade , Microbiologia da Água , Bactérias/classificação , Bactérias/genética , DNA Bacteriano/genética , Água Doce/microbiologia , Islândia , RNA Ribossômico 16S/genética , Água do Mar/microbiologia , Análise de Sequência de DNARESUMO
Strains PRI 2268 and PRI 3838(T) were isolated from two separate hot springs in the Torfajokull geothermal area of South Iceland. The cells were non-motile rods, approximately 0.3 microm in width and 1.5-2.5 microm in length. Electron microscopy revealed a Gram-negative cell-wall structure. The strains grew at 45-79 degrees C (optimum, 65 degrees C) and pH 5.5-10.5 (optimum, pH 6.0-7.0). 16S rRNA gene sequence analysis indicated that they formed a separate branch within the genus Thermus with 'Thermus kawarayensis' KW11 as their closest cultured relative (96.5 % similarity). The gene sequence similarities of both new isolates to Thermus aquaticus YT-1(T) and Thermus igniterrae RF-4(T) were 96.1 % and 95.5 %, respectively. DNA-DNA relatedness between strain PRI 3838(T) and 'T. kawarayensis' was 46.1 %. The DNA G+C content of strain PRI 3838(T) was 69.0 mol%. The predominant menaquinones, pigmentation, fatty acid profiles and phospholipid profiles of the novel strains were similar to those of other members of the genus Thermus. However, the new strains could be differentiated from the type strains of all other species of the genus Thermus by their lack of catalase activity and their utilization of only a few carbon sources. Furthermore, the novel strains exhibited mixotrophic growth with sulfur oxidation. On the basis of 16S rRNA gene sequence comparisons, DNA-DNA hybridization and physiological and biochemical characteristics, the new isolates represent a novel species. Since the species appears to be ubiquitous in Icelandic hot springs, the name Thermus islandicus sp. nov. is proposed. The type strain is PRI 3838(T) (=DSM 21543(T)=ATCC BAA-1677(T)).
Assuntos
Enxofre/metabolismo , Thermus/classificação , Thermus/isolamento & purificação , DNA Bacteriano/genética , DNA Ribossômico/genética , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Islândia , Dados de Sequência Molecular , Oxirredução , Fosfolipídeos/metabolismo , Filogenia , RNA Ribossômico 16S/genética , Thermus/genética , Thermus/metabolismoRESUMO
Eighteen new microsatellite loci consisting of 10 di-, 5 tri-, 2 tetra- and 1 heptanucleotide repeats are introduced for the Atlantic cod (Gadus morhua L.). All loci were co-amplified in two polymerase chain reactions (plus two previously published microsatellites) and all products were typed clearly. The number of alleles per locus ranged from six (PGmo130) to 45 (PGmo76) and the observed heterozygosity ranged from 0.356 (PGmo130) to 0.957 (PGmo95). All loci except one followed Hardy-Weinberg expectations. Genetic linkage disequilibrium analysis between all pairs of loci did not yield any significant values.
RESUMO
Genetic relationships and diversity of 101 Thermus isolates from different geothermal regions in Iceland were investigated by using multilocus enzyme electrophoresis (MLEE) and small subunit ribosomal rRNA (SSU rRNA) sequence analysis. Ten polymorphic enzymes were used and seven distinct and genetically highly divergent lineages of Thermus were observed. Six of seven lineages could be assigned to species whose names have been validated. The most diverse lineage was Thermus scotoductus. In contrast to the other lineages, this lineage was divided into very distinct genetic sublineages that may represent subspecies with different habitat preferences. The least diverse lineage was Thermus brockianus. Phenotypic and physiological analysis was carried out on a subset of the isolates. No relationship was found between growth on specific single carbon source to the grouping obtained by the isoenzyme analysis. The response to various salts was distinguishing in a few cases. No relationship was found between temperature at the isolation site and the different lineages, but pH indicated a relation to specific lineages.
Assuntos
Técnicas de Tipagem Bacteriana , Fontes Termais/microbiologia , Thermus/classificação , Microbiologia da Água , Adaptação Fisiológica , Proteínas de Bactérias/análise , Biodiversidade , DNA Bacteriano/análise , Bases de Dados Genéticas , Eletroforese em Gel de Poliacrilamida , Enzimas/análise , Evolução Molecular , Genótipo , Concentração de Íons de Hidrogênio , Islândia , Oxirredução , Fenótipo , Filogenia , RNA Ribossômico/genética , Ribotipagem , Análise de Sequência de DNA , Homologia de Sequência do Ácido Nucleico , Cloreto de Sódio/metabolismo , Temperatura , Thermus/enzimologia , Thermus/genética , Thermus/crescimento & desenvolvimento , Thermus/isolamento & purificação , Thermus/metabolismo , Thermus thermophilus/classificação , Tiossulfatos/metabolismoRESUMO
Rhodothermus marinus has been the subject of many studies in recent years. It is a thermohalophilic bacterium and is the only validly described species in the genus Rhodothermus. It is not closely related to other well-known thermophiles and is the only thermophile within the family Crenotrichaceae. R. marinus has been isolated from several similar but distantly located geothermal habitats, many of which are subject to large fluctuations in environmental conditions. This presumably affects the physiology of R. marinus. Many of its enzymes show optimum activity at temperatures considerably higher than 65 degrees C, the optimum for growth, and some are active over a broad temperature range. Studies have found distinguishing components in the R. marinus electron transport chain as well as in its pool of intracellular solutes, which accumulate during osmotic stress. The species hosts both bacteriophages and plasmids and a functional intein has been isolated from its chromosome. Despite these interesting features and its unknown genetics, interest in R. marinus has been mostly stimulated by its thermostable enzymes, particularly polysaccharide hydrolysing enzymes and enzymes of DNA synthesis which may be useful in industry and in the laboratory. R. marinus has not been amenable to genetic analysis until recently when a system for gene transfer was established. Here, we review the current literature on R. marinus.
Assuntos
Rhodothermus/genética , Rhodothermus/fisiologia , Bacteriófagos/genética , Bacteriófagos/isolamento & purificação , Transporte de Elétrons , Água Doce/microbiologia , Genes Bacterianos , Temperatura Alta , Inteínas , Microscopia Eletrônica , Fenótipo , Filogenia , Plasmídeos/genética , Plasmídeos/isolamento & purificação , Rhodothermus/classificação , Rhodothermus/ultraestruturaRESUMO
A polynucleotide kinase from the thermophilic bacteriophage RM378 that infects the thermophilic eubacterium Rhodothermus marinus was identified, expressed, and purified. This polynucleotide kinase was demonstrated to have a 5'-kinase domain as well as a 3'-phosphohydrolase domain. The RM378 polynucleotide kinase had limited sequence similarity to the 5'-kinase domain of the T4 bacteriophage polynucleotide kinase, but apparent homology was not evident within the 3'-phosphohydrolase domain. The domain order of RM378 polynucleotide kinase was reversed relative to that of the T4 polynucleotide kinase. The RM378 phosphohydrolase domain displayed some sequence similarity with the bacterial poly(A) polymerase family, including an HD motif characteristic of the diverse superfamily of metal-dependent HD phosphohydrolases. The RM378 polynucleotide kinase was biochemically characterized and shown to possess 5'-kinase activity on RNA and single- and double-stranded DNA at elevated temperatures. It also showed phosphohydrolase activity on 2':3'-cyclic adenosine monophosphate. This description of the RM378 polynucleotide kinase, along with the recently described RM378 RNA ligase, suggests that the RM378 bacteriophage has to counter a similar anti-phage mechanism in R. marinus as the one that the T4 phage has to counter in Escherichia coli.