Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Entropy (Basel) ; 25(1)2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36673302

RESUMO

Assuming that there is no way of sending signals propagating faster than light and that free will exists, the loophole-free observed violation of Bell's inequalities demonstrates that at least one of three fundamental hypotheses involved in the derivation and observation of the inequalities is false: Locality, Realism, or Ergodicity. An experiment is proposed to obtain some evidence about which one is the false one. It is based on recording the time evolution of the rate of non-random series of outcomes that are generated in a specially designed Bell's setup. The results of such experiment would be important not only to the foundations of Quantum Mechanics, but they would also have immediate practical impact on the efficient use of quantum-based random number generators and the security of Quantum Key Distribution using entangled states.

2.
Entropy (Basel) ; 23(12)2021 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-34945896

RESUMO

Quantum mechanics predicts correlations between measurements performed in distant regions of a spatially spread entangled state to be higher than allowed by intuitive concepts of Locality and Realism. These high correlations forbid the use of nonlinear operators of evolution (which would be desirable for several reasons), for they may allow faster-than-light signaling. As a way out of this situation, it has been hypothesized that the high quantum correlations develop only after a time longer than L/c has elapsed (where L is the spread of the entangled state and c is the velocity of light). In shorter times, correlations compatible with Locality and Realism would be observed instead. A simple hidden variables model following this hypothesis is described. It is based on a modified Wheeler-Feynman theory of radiation. This hypothesis has not been disproved by any of the experiments performed to date. A test achievable with accessible means is proposed and described. It involves a pulsed source of entangled states and stroboscopic record of particle detection during the pulses. Data recorded in similar but incomplete optical experiments are analyzed, and found consistent with the proposed model. However, it is not claimed, in any sense, that the hypothesis has been validated. On the contrary, it is stressed that a complete, specific test is absolutely needed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA