Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS One ; 16(2): e0244842, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33596202

RESUMO

Walking is a complex motor function requiring coordination of all body parts. Parkinson's disease (PD) motor signs such as rigidity, bradykinesia, and impaired balance affect movements including walking. Here, we propose a computational method to objectively assess the effects of Parkinson's disease pathology on coordination between trunk, shoulder and limbs during the gait cycle to assess medication state and disease severity. Movements during a scripted walking task were extracted from wearable devices placed at six different body locations in participants with PD and healthy participants. Three-axis accelerometer data from each device was synchronized at the beginning of either left or right steps. Canonical templates of movements were then extracted from each body location. Movements projected on those templates created a reduced dimensionality space, where complex movements are represented as discrete values. These projections enabled us to relate the body coordination in people with PD to disease severity. Our results show that the velocity profile of the right wrist and right foot during right steps correlated with the participant's total score on the gold standard Unified Parkinson's Disease Rating Scale (UPRDS) with an r2 up to 0.46. Left-right symmetry of feet, trunk and wrists also correlated with the total UPDRS score with an r2 up to 0.3. In addition, we demonstrate that binary dopamine replacement therapy medication states (self-reported 'ON' or 'OFF') can be discriminated in PD participants. In conclusion, we showed that during walking, the movement of body parts individually and in coordination with one another changes in predictable ways that vary with disease severity and medication state.


Assuntos
Doença de Parkinson/fisiopatologia , Desempenho Psicomotor/fisiologia , Caminhada/fisiologia , Idoso , Dopaminérgicos/uso terapêutico , Feminino , Marcha/fisiologia , Humanos , Hipocinesia/diagnóstico , Levodopa/uso terapêutico , Masculino , Pessoa de Meia-Idade , Movimento/fisiologia , Equilíbrio Postural/fisiologia , Índice de Gravidade de Doença , Dispositivos Eletrônicos Vestíveis
2.
Sci Rep ; 10(1): 7377, 2020 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-32355166

RESUMO

Unconstrained human movement can be broken down into a series of stereotyped motifs or 'syllables' in an unsupervised fashion. Sequences of these syllables can be represented by symbols and characterized by a statistical grammar which varies with external situational context and internal neurological state. By first constructing a Markov chain from the transitions between these syllables then calculating the stationary distribution of this chain, we estimate the overall severity of Parkinson's symptoms by capturing the increasingly disorganized transitions between syllables as motor impairment increases. Comparing stationary distributions of movement syllables has several advantages over traditional neurologist administered in-clinic assessments. This technique can be used on unconstrained at-home behavior as well as scripted in-clinic exercises, it avoids differences across human evaluators, and can be used continuously without requiring scripted tasks be performed. We demonstrate the effectiveness of this technique using movement data captured with commercially available wrist worn sensors in 35 participants with Parkinson's disease in-clinic and 25 participants monitored at home.


Assuntos
Terapia por Exercício , Movimento , Doença de Parkinson/fisiopatologia , Doença de Parkinson/terapia , Punho/fisiopatologia , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
3.
NPJ Digit Med ; 3: 6, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31970291

RESUMO

Accurately monitoring motor and non-motor symptoms as well as complications in people with Parkinson's disease (PD) is a major challenge, both during clinical management and when conducting clinical trials investigating new treatments. A variety of strategies have been relied upon including questionnaires, motor diaries, and the serial administration of structured clinical exams like part III of the MDS-UPDRS. To evaluate the potential use of mobile and wearable technologies in clinical trials of new pharmacotherapies targeting PD symptoms, we carried out a project (project BlueSky) encompassing four clinical studies, in which 60 healthy volunteers (aged 23-69; 33 females) and 95 people with PD (aged 42-80; 37 females; years since diagnosis 1-24 years; Hoehn and Yahr 1-3) participated and were monitored in either a laboratory environment, a simulated apartment, or at home and in the community. In this paper, we investigated (i) the utility and reliability of self-reports for describing motor fluctuations; (ii) the agreement between participants and clinical raters on the presence of motor complications; (iii) the ability of video raters to accurately assess motor symptoms, and (iv) the dynamics of tremor, dyskinesia, and bradykinesia as they evolve over the medication cycle. Future papers will explore methods for estimating symptom severity based on sensor data. We found that 38% of participants who were asked to complete an electronic motor diary at home missed ~25% of total possible entries and otherwise made entries with an average delay of >4 h. During clinical evaluations by PD specialists, self-reports of dyskinesia were marked by ~35% false negatives and 15% false positives. Compared with live evaluation, the video evaluation of part III of the MDS-UPDRS significantly underestimated the subtle features of tremor and extremity bradykinesia, suggesting that these aspects of the disease may be underappreciated during remote assessments. On the other hand, live and video raters agreed on aspects of postural instability and gait. Our results highlight the significant opportunity for objective, high-resolution, continuous monitoring afforded by wearable technology to improve upon the monitoring of PD symptoms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA