Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Hepatology ; 79(2): 323-340, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37540188

RESUMO

BACKGROUND AND AIMS: HCC is an aggressive cancer with a poor clinical outcome. Understanding the mechanisms that drive tumor initiation is important for improving treatment strategy. This study aimed to identify functional cell membrane proteins that promote HCC tumor initiation. APPROACH AND RESULTS: Tailor-made siRNA library screening was performed for all membrane protein-encoding genes that are upregulated in human HCC (n = 134), with sphere formation as a surrogate readout for tumor initiation. Upon confirmation of membranous localization by immunofluorescence and tumor initiation ability by limiting dilution assay in vivo, LanC-like protein-1 (LANCL1) was selected for further characterization. LANCL1 suppressed intracellular reactive oxygen species (ROS) and promoted tumorigenicity both in vitro and in vivo. Mechanistically, with mass spectrometry, FAM49B was identified as a downstream binding partner of LANCL1. LANCL1 stabilized FAM49B by blocking the interaction of FAM49B with the specific E3 ubiquitin ligase TRIM21, thus protecting FAM49B from ubiquitin-proteasome degradation. The LANCL1-FAM49B axis suppressed the Rac1-NADPH oxidase-driven ROS production, but this suppression of ROS was independent of the glutathione transferase function of LANCL1. Clinically, HCCs with high co-expression of LANCL1 and FAM49B were associated with more advanced tumor stage, poorer overall survival, and disease-free survival. In addition, anti-LANCL1 antibodies targeting the extracellular N-terminal domain were able to suppress the self-renewal ability, as demonstrated by the sphere formation ability of HCC cells. CONCLUSIONS: Our data showed that LANCL1 is a cell surface protein and a key contributor to HCC initiation. Targeting the LANCL1-FAM49B-Rac1-NADPH oxidase-ROS signaling axis may be a promising therapeutic strategy for HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Espécies Reativas de Oxigênio/metabolismo , Proteínas de Membrana/metabolismo , Estresse Oxidativo , NADPH Oxidases/metabolismo , Linhagem Celular Tumoral , Receptores Acoplados a Proteínas G/metabolismo
2.
Gut ; 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38839271

RESUMO

OBJECTIVE: Fat mass and obesity-associated protein (FTO), an eraser of N 6-methyadenosine (m6A), plays oncogenic roles in various cancers. However, its role in hepatocellular carcinoma (HCC) is unclear. Furthermore, small extracellular vesicles (sEVs, or exosomes) are critical mediators of tumourigenesis and metastasis, but the relationship between FTO-mediated m6A modification and sEVs in HCC is unknown. DESIGN: The functions and mechanisms of FTO and glycoprotein non-metastatic melanoma protein B (GPNMB) in HCC progression were investigated in vitro and in vivo. Neutralising antibody of syndecan-4 (SDC4) was used to assess the significance of sEV-GPNMB. FTO inhibitor CS2 was used to examine the effects on anti-PD-1 and sorafenib treatment. RESULTS: FTO expression was upregulated in patient HCC tumours. Functionally, FTO promoted HCC cell proliferation, migration and invasion in vitro, and tumour growth and metastasis in vivo. FTO knockdown enhanced the activation and recruitment of tumour-infiltrating CD8+ T cells. Furthermore, we identified GPNMB to be a downstream target of FTO, which reduced the m6A abundance of GPNMB, hence, stabilising it from degradation by YTH N 6-methyladenosine RNA binding protein F2. Of note, GPNMB was packaged into sEVs derived from HCC cells and bound to the surface receptor SDC4 of CD8+ T cells, resulting in the inhibition of CD8+ T cell activation. A potential FTO inhibitor, CS2, suppresses the oncogenic functions of HCC cells and enhances the sensitivity of anti-PD-1 and sorafenib treatment. CONCLUSION: Targeting the FTO/m6A/GPNMB axis could significantly suppress tumour growth and metastasis, and enhance immune activation, highlighting the potential of targeting FTO signalling with effective inhibitors for HCC therapy.

3.
Hepatology ; 78(5): 1368-1383, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36632999

RESUMO

BACKGROUND AND AIMS: Understanding the mechanisms of HCC progression and metastasis is crucial to improve early diagnosis and treatment. This study aimed to identify key molecular targets involved in HCC metastasis. APPROACH AND RESULTS: Using whole-transcriptome sequencing of patients' HCCs, we identified and validated midline 1 interacting protein 1 (MID1IP1) as one of the most significantly upregulated genes in metastatic HCCs, suggesting its potential role in HCC metastasis. Clinicopathological correlation demonstrated that MID1IP1 upregulation significantly correlated with more aggressive tumor phenotypes and poorer patient overall survival rates. Functionally, overexpression of MID1IP1 significantly promoted the migratory and invasive abilities and enhanced the sphere-forming ability and expression of cancer stemness-related genes of HCC cells, whereas its stable knockdown abrogated these effects. Perturbation of MID1IP1 led to significant tumor shrinkage and reduced pulmonary metastases in an orthotopic liver injection mouse model and reduced pulmonary metastases in a tail-vein injection model in vivo . Mechanistically, SP1 transcriptional factor was found to be an upstream driver of MID1IP1 transcription. Furthermore, transcriptomic sequencing on MID1IP1-overexpressing HCC cells identified FOS-like 1 (FRA1) as a critical downstream mediator of MID1IP1. MID1IP1 upregulated FRA1 to subsequently promote its transcriptional activity and extracellular matrix degradation activity of matrix metalloproteinase MMP9, while knockdown of FRA1 effectively abolished the MID1IP1-induced migratory and invasive abilities. CONCLUSIONS: Our study identified MID1IP1 as a regulator in promoting FRA1-mediated-MMP9 signaling and demonstrated its role in HCC metastasis. Targeting MID1IP1-mediated FRA1 pathway may serve as a potential therapeutic strategy against HCC progression.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Humanos , Camundongos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/secundário , Metaloproteinase 9 da Matriz/metabolismo , Metástase Neoplásica , Transdução de Sinais/genética
4.
Semin Cancer Biol ; 82: 134-149, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-33647386

RESUMO

Hepatocarcinogenesis involves complex genetic and cellular dysregulations which drive the formation of hepatocellular carcinoma (HCC), the predominant form of primary liver cancer, with extensive heterogeneity. In contrast to the broad spectrum of molecularly driven therapies available for defined patient groups in certain cancer types, unfortunately the treatment options for HCC are highly limited. The lack of representative molecular and cellular signatures in the heterogeneous HCC tumors that can effectively guide the choice of the most appropriate treatment among the patients unavoidably limits the treatment outcome. Advancement and wide availability of the next-generation sequencing technologies have empowered us to examine and capture not only the detailed genetic alterations of the HCC cells but also the precise composition of different cell types within the tumor microenvironment and their interactions with the HCC cells at an unprecedented level. The information generated has provided new insight and better defined the inter-patient intertumoral heterogeneity, intra-patient intratumoral heterogeneity as well as the plasticity of HCC cells. These collectively provide a robust scientific basis in guiding the development and use of targeted therapy and immunotherapy. To complement, liquid biopsy coupled with high-sensitivity sequencing could potentially be adopted as a more practical and safer approach to detect and reflect the tumor heterogeneity in HCC patients in guiding the choice of treatment and monitoring disease progression.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/terapia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Biópsia Líquida , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/terapia , Microambiente Tumoral/genética
5.
Hepatology ; 76(1): 48-65, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34767674

RESUMO

BACKGROUND AND AIMS: Ras-like (Ral) small guanosine triphosphatases (GTPases), RalA and RalB, are proto-oncogenes directly downstream of Ras and cycle between the active guanosine triphosphate-bound and inactive guanosine diphosphate-bound forms. RalGTPase-activating protein (RalGAP) complex exerts a negative regulation. Currently, the role of Ral up-regulation in cancers remains unclear. We aimed to examine the clinical significance, functional implications, and underlying mechanisms of RalA signaling in HCC. APPROACH AND RESULTS: Our in-house and The Cancer Genome Atlas RNA sequencing data and quantitative PCR data revealed significant up-regulation of RalA in patients' HCCs. Up-regulation of RalA was associated with more aggressive tumor behavior and poorer prognosis. Consistently, knockdown of RalA in HCC cells attenuated cell proliferation and migration in vitro and tumorigenicity and metastasis in vivo. We found that RalA up-regulation was driven by copy number gain and uncovered that SP1 and ETS proto-oncogene 2 transcription factor cotranscriptionally drove RalA expression. On the other hand, RalGAPA2 knockdown increased the RalA activity and promoted intrahepatic and extrahepatic metastasis in vivo. Consistently, we observed significant RalGAPA2 down-regulation in patients' HCCs. Intriguingly, HCC tumors showing simultaneous down-regulation of RalGAPA2 and up-regulation of RalA displayed a significant association with more aggressive tumor behavior in terms of more frequent venous invasion, more advanced tumor stage, and poorer overall survival. Of note, Ral inhibition by a Ral-specific inhibitor RBC8 suppressed the oncogenic functions in a dose-dependent manner and sensitized HCC cells to sorafenib treatment, with an underlying enhanced inhibition of mammalian target of rapamycin signaling. CONCLUSIONS: Our results provide biological insight that dysregulation of RalA signaling through dual regulatory mechanisms supports its oncogenic functions in HCC. Targeting RalA may serve as a potential alternative therapeutic approach alone or in combination with currently available therapy.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Proteínas ral de Ligação ao GTP , Carcinogênese/genética , Carcinoma Hepatocelular/genética , Regulação para Baixo , Proteínas Ativadoras de GTPase/genética , Humanos , Neoplasias Hepáticas/genética , Transdução de Sinais , Proteínas ral de Ligação ao GTP/genética
6.
J Hepatol ; 77(2): 383-396, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35227773

RESUMO

BACKGROUND & AIMS: The highly proliferative nature of hepatocellular carcinoma (HCC) frequently results in a hypoxic intratumoural microenvironment, which creates a therapeutic challenge owing to a lack of mechanistic understanding of the phenomenon. We aimed to identify critical drivers of HCC development and progression in the hypoxic microenvironment. METHODS: We performed integrative analysis of multiple transcriptomic and genomic profiles specific for HCC and hypoxia and identified the Ephrin-A3/Eph receptor A2 (EphA2) axis as a clinically relevant and hypoxia-inducible signalling axis in HCC. The functional significance and mechanistic consequences of the Ephrin-A3/EphA2 axis were examined in EFNA3- and EPHA2- knockdown/overexpressing HCC cells. The potential downstream pathways were investigated by transcriptome sequencing, quantitative reverse-transcription PCR, western blotting analysis and metabolomics. RESULTS: EFNA3 was frequently upregulated in HCC and its overexpression was associated with more aggressive tumour behaviours. HIF-1α directly and positively regulated EFNA3 expression under hypoxia. EFNA3 functionally contributed to self-renewal, proliferation and migration in HCC cells. EphA2 was identified as a key functional downstream mediator of EFNA3. Functional characterisation of the Ephrin-A3/EphA2 forward-signalling axis demonstrated a promotion of self-renewal ability and tumour initiation. Mechanistically, the Ephrin-A3/EphA2 axis promoted the maturation of SREBP1 and expression of its transcriptional target, ACLY, was significantly associated with the expression of EFNA3 and hypoxia markers in clinical cohorts. The metabolic signature of EPHA2 and ACLY stable knockdown HCC cells demonstrated significant overlap in fatty acid, cholesterol and tricarboxylic acid cycle metabolite profiles. ACLY was confirmed to mediate the self-renewal function of the Ephrin-A3/EphA2 axis. CONCLUSIONS: Our findings revealed the novel role of the Ephrin-A3/EphA2 axis as a hypoxia-sensitive modulator of HCC cell metabolism and a key contributor to HCC initiation and progression. LAY SUMMARY: Hepatocellular carcinoma (HCC) is a fast-growing tumour; hence, areas of the tumour often have insufficient vasculature and become hypoxic. The presence of hypoxia within tumours has been shown to negatively impact on the survival of patients with tumours, including HCC. Herein, we identified the Ephrin-A3/EphA2 axis as a key functional driver of tumour initiation and progression in response to hypoxia. Additionally, we showed that SREBP1-ACLY-mediated metabolic rewiring was an important downstream effector that induced cancer stemness in response to Ephrin-A3/EphA2 forward-signalling.


Assuntos
Carcinoma Hepatocelular , Efrina-A3 , Neoplasias Hepáticas , Receptor EphA2 , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Efrina-A3/genética , Efrina-A3/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Hipóxia , Neoplasias Hepáticas/patologia , Receptor EphA2/genética , Receptor EphA2/metabolismo , Microambiente Tumoral
7.
Hepatology ; 73(1): 23-40, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32170761

RESUMO

BACKGROUND AND AIMS: Hepatitis B virus (HBV) integrations are common in hepatocellular carcinoma (HCC). In particular, alterations of the telomerase reverse transcriptase (TERT) gene by HBV integrations are frequent; however, the molecular mechanism and functional consequence underlying TERT HBV integration are unclear. APPROACH AND RESULTS: We adopted a targeted sequencing strategy to survey HBV integrations in human HBV-associated HCCs (n = 95). HBV integration at the TERT promoter was frequent (35.8%, n = 34/95) in HCC tumors and was associated with increased TERT mRNA expression and more aggressive tumor behavior. To investigate the functional importance of various integrated HBV components, we employed different luciferase reporter constructs and found that HBV enhancer I (EnhI) was the key viral component leading to TERT activation on integration at the TERT promoter. In addition, the orientation of the HBV integration at the TERT promoter further modulated the degree of TERT transcription activation in HCC cell lines and patients' HCCs. Furthermore, we performed array-based small interfering RNA library functional screening to interrogate the potential major transcription factors that physically interacted with HBV and investigated the cis-activation of host TERT gene transcription on viral integration. We identified a molecular mechanism of TERT activation through the E74 like ETS transcription factor 4 (ELF4), which normally could drive HBV gene transcription. ELF4 bound to the chimeric HBV EnhI at the TERT promoter, resulting in telomerase activation. Stable knockdown of ELF4 significantly reduced the TERT expression and sphere-forming ability in HCC cells. CONCLUSIONS: Our results reveal a cis-activating mechanism harnessing host ELF4 and HBV integrated at the TERT promoter and uncover how TERT HBV-integrated HCCs may achieve TERT activation in hepatocarcinogenesis.


Assuntos
Carcinoma Hepatocelular/patologia , Vírus da Hepatite B/fisiologia , Hepatite B/complicações , Neoplasias Hepáticas/patologia , Telomerase/genética , Adulto , Idoso , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/virologia , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/genética , Feminino , Vírus da Hepatite B/genética , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/virologia , Masculino , Pessoa de Meia-Idade , Mutação , Regiões Promotoras Genéticas , Fatores de Transcrição/genética , Transcrição Gênica , Ativação Transcricional , Integração Viral , Adulto Jovem
8.
J Hepatol ; 74(2): 360-371, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32918955

RESUMO

BACKGROUND & AIMS: Mutational profiling of patient tumors has suggested that hepatocellular carcinoma (HCC) development is mainly driven by loss-of-function mutations in tumor suppressor genes. p90 ribosomal S6 kinase 2 (RSK2) functions as a direct downstream kinase of ERK1/2 and elevated RSK2 expression has been reported to support oncogenic functions in some cancers. We investigated if RSK2 was also dysregulated by inactivating mutations in cancers including HCC. METHODS: We performed exome sequencing and targeted DNA sequencing on HBV-associated HCCs to examine recurrent RSK2 mutations. The functional significance and mechanistic consequences of RSK2 mutations were examined in natural RSK2-null HCC cells, and RSK2-knockout HCC cells. The potential downstream pathways underlying RSK2 mutations were investigated by RNA sequencing, qRT-PCR and mass spectrometry. RESULTS: We detected recurrent somatic RSK2 mutations at a rate of 6.3% in our HCC cohorts and revealed that, among many cancer types, HCC was the cancer most commonly harboring RSK2 mutations. The RSK2 mutations were inactivating and associated with a more aggressive tumor phenotype. We found that, functionally, restoring RSK2 expression in natural RSK2-null HBV-positive Hep3B cells suppressed proliferation and migration in vitro and tumorigenicity in vivo. Mechanistically, RSK2-inactivating mutations attenuated a SOS1/2-dependent negative feedback loop, leading to the activation of MAPK signaling. Of note, this RSK2 mutation-mediated MAPK upregulation rendered HCC cells more sensitive to sorafenib, a first-line multi-kinase inhibitor for advanced HCC. Furthermore, such activation of MAPK signaling enhanced cholesterol biosynthesis-related gene expression in HCC cells. CONCLUSIONS: Our findings reveal the mechanistic and functional significance of RSK2-inactivating mutations in HCC. These inactivating mutations may serve as an alternative route to activate MAPK signaling and cholesterol metabolism in HCC. LAY SUMMARY: In this study, we identified and functionally characterized RSK2-inactivating mutations in human hepatocellular carcinoma and demonstrated their association with aggressive tumor behavior. Mutations in RSK2 drive signaling pathways with known oncogenic potential, leading to enhanced cholesterol biosynthesis and potentially sensitizing tumors to sorafenib treatment.


Assuntos
Carcinoma Hepatocelular , Colesterol , Neoplasias Hepáticas , Proteínas Quinases S6 Ribossômicas 90-kDa/genética , Sorafenibe/farmacologia , Antineoplásicos/farmacologia , Biomarcadores Tumorais/análise , Carcinogênese/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Colesterol/biossíntese , Colesterol/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Mutação com Perda de Função , Sistema de Sinalização das MAP Quinases/genética , Sequenciamento do Exoma
9.
Hepatology ; 69(5): 2013-2030, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30516846

RESUMO

Hepatocellular carcinoma (HCC) is the third most lethal cancer worldwide. Increasing evidence shows that epigenetic alterations play an important role in human carcinogenesis. Deregulation of DNA methylation and histone modifications have recently been characterized in HCC, but the significance of chromatin remodeling in liver carcinogenesis remains to be explored. In this study, by systematically analyzing the expression of chromatin remodeling genes in human HCCs, we found that helicase, lymphoid-specific (HELLS), an SWI2/SNF2 chromatin remodeling enzyme, was remarkably overexpressed in HCC. Overexpression of HELLS correlated with more aggressive clinicopathological features and poorer patient prognosis compared to patients with lower HELLS expression. We further showed that up-regulation of HELLS in HCC was conferred by hyperactivation of transcription factor specificity protein 1 (SP1). To investigate the functions of HELLS in HCC, we generated both gain-of-function and loss-of-function models by the CRISPR activation system, lentiviral short hairpin RNA, and the CRISPR/Cas9 genome editing system. We demonstrated that overexpression of HELLS augmented HCC cell proliferation and migration. In contrast, depletion of HELLS reduced HCC growth and metastasis both in vitro and in vivo. Moreover, inactivation of HELLS led to metabolic reprogramming and reversed the Warburg effect in HCC cells. Mechanistically, by integrating analysis of RNA sequencing and micrococcal nuclease sequencing, we revealed that overexpression of HELLS increased nucleosome occupancy, which obstructed the accessibility of enhancers and hindered formation of the nucleosome-free region (NFR) at the transcription start site. Though this mechanism, up-regulation of HELLS mediated epigenetic silencing of multiple tumor suppressor genes including E-cadherin, FBP1, IGFBP3, XAF1 and CREB3L3 in HCC. Conclusion: Our data reveal that HELLS is a key epigenetic driver of HCC; by altering the nucleosome occupancy at the NFR and enhancer, HELLS epigenetically suppresses multiple tumor suppressor genes to promote HCC progression.


Assuntos
Carcinoma Hepatocelular/enzimologia , DNA Helicases/metabolismo , Neoplasias Hepáticas Experimentais/enzimologia , Nucleossomos/metabolismo , Animais , Antígenos CD/metabolismo , Caderinas/metabolismo , Carcinoma Hepatocelular/etiologia , Linhagem Celular Tumoral , Montagem e Desmontagem da Cromatina , DNA Helicases/genética , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Genes Supressores de Tumor , Humanos , Neoplasias Hepáticas Experimentais/etiologia , Camundongos Knockout , Camundongos Nus , Metástase Neoplásica , Fator de Transcrição Sp1/metabolismo
10.
Int J Cancer ; 145(7): 1860-1873, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30834518

RESUMO

Accumulating evidence illustrates the significance of cell plasticity in the molecular biology of liver cancer. Reprogramming of mature parenchymal cells to a less differentiated state by key molecular targets contributes to the pathogenesis of hepatocellular carcinoma (HCC). Hereby, we investigated the role of GATA6, a transcription factor implicated in hepatocyte lineage specification, in HCC. Our results demonstrated a lower expression of GATA6 in HCC tissues compared to the corresponding nontumoral liver tissues. Moreover, GATA6 underexpression, as observed in about 50% cases in our clinical cohort, was associated with a poorer degree of tumor cell differentiation and worse disease-free survival outcome. In vitro, silencing of GATA6 in HCC cells augmented cell migration and invasion abilities of HCC cells by activating epithelial-mesenchymal transition. Self-renewal was also enhanced in vitro. Consistently, in vivo tumorigenicity and self-renewal was promoted upon GATA6 knockdown. Notably, suppression of GATA6 converts HCC cells to a metabolic phenotype recapitulating stem-cell state. Expression of glycolytic markers was elevated in GATA6-knockdown clones accompanied by increased glucose uptake; while overexpression of GATA6 resulted in opposite effects. Further to this, we identified that GATA6 bound to the promoter region of PKM gene and regulated PKM2 transcription. Taken together, downregulation of GATA6 directs HCC cells to glycolytic metabolism and fosters tumorigenicity, self-renewal and metastasis. GATA6 is a transcriptional regulator and a genetic switch that converts the phenotypic reprogramming of HCC cells. It is a potential prognostic biomarker and therapeutic target for liver cancer.


Assuntos
Carcinoma Hepatocelular/patologia , Regulação para Baixo , Fator de Transcrição GATA6/genética , Fator de Transcrição GATA6/metabolismo , Neoplasias Hepáticas/patologia , Células-Tronco Neoplásicas/metabolismo , Animais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Diferenciação Celular , Linhagem Celular Tumoral , Autorrenovação Celular , Transição Epitelial-Mesenquimal , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Glicólise , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Masculino , Camundongos , Transplante de Neoplasias , Células-Tronco Neoplásicas/patologia , Prognóstico , Análise de Sobrevida
11.
Hepatology ; 67(6): 2254-2270, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29171881

RESUMO

Epigenetic alterations have contributed greatly to human carcinogenesis. Conventional epigenetic studies have predominantly focused on DNA methylation, histone modifications, and chromatin remodeling. Recently, diverse and reversible chemical modifications of RNAs have emerged as a new layer of epigenetic regulation. N6-methyladenosine (m6A) is the most abundant chemical modification of eukaryotic messenger RNA (mRNA) and is important for the regulation of mRNA stability, splicing, and translation. Using transcriptome sequencing, we discovered that methyltransferase-like 3 (METTL3), a major RNA N6-adenosine methyltransferase, was significantly up-regulated in human hepatocellular carcinoma (HCC) and multiple solid tumors. Clinically, overexpression of METTL3 is associated with poor prognosis of patients with HCC. Functionally, we proved that knockdown of METTL3 drastically reduced HCC cell proliferation, migration, and colony formation in vitro. Knockout of METTL3 remarkably suppressed HCC tumorigenicity and lung metastasis in vivo. On the other hand, using the CRISPR/dCas9-VP64 activation system, we demonstrated that overexpression of METTL3 significantly promoted HCC growth both in vitro and in vivo. Through transcriptome sequencing, m6A sequencing, and m6A methylated RNA immuno-precipitation quantitative reverse-transcription polymerase chain reaction, we identified suppressor of cytokine signaling 2 (SOCS2) as a target of METTL3-mediated m6A modification. Knockdown of METTL3 substantially abolished SOCS2 mRNA m6A modification and augmented SOCS2 mRNA expression. We also showed that m6A-mediated SOCS2 mRNA degradation relied on the m6A reader protein YTHDF2-dependent pathway. CONCLUSION: METTL3 is frequently up-regulated in human HCC and contributes to HCC progression. METTL3 represses SOCS2 expression in HCC through an m6A-YTHDF2-dependent mechanism. Our findings suggest an important mechanism of epigenetic alteration in liver carcinogenesis. (Hepatology 2018;67:2254-2270).


Assuntos
Carcinoma Hepatocelular/etiologia , Neoplasias Hepáticas/etiologia , Metiltransferases/fisiologia , Interferência de RNA , Proteínas de Ligação a RNA/fisiologia , Proteínas Supressoras da Sinalização de Citocina/genética , Animais , Carcinoma Hepatocelular/enzimologia , Progressão da Doença , Humanos , Neoplasias Hepáticas/enzimologia , Camundongos
12.
Gut ; 66(12): 2149-2159, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28258134

RESUMO

OBJECTIVE: We investigated the effect and mechanism of hypoxic microenvironment and hypoxia-inducible factors (HIFs) on hepatocellular carcinoma (HCC) cancer stemness. DESIGN: HCC cancer stemness was analysed by self-renewal ability, chemoresistance, expression of stemness-related genes and cancer stem cell (CSC) marker-positive cell population. Specific small ubiquitin-like modifier (SUMO) proteases 1 (SENP1) mRNA level was examined with quantitative PCR in human paired HCCs. Immunoprecipitation was used to examine the binding of proteins and chromatin immunoprecipitation assay to detect the binding of HIFs with hypoxia response element sequence. In vivo characterisation was performed in immunocompromised mice and stem cell frequency was analysed. RESULTS: We showed that hypoxia enhanced the stemness of HCC cells and hepatocarcinogenesis through enhancing HIF-1α deSUMOylation by SENP1 and increasing stabilisation and transcriptional activity of HIF-1α. Furthermore, we demonstrated that SENP1 is a direct target of HIF-1/2α and a previously unrecognised positive feedback loop exists between SENP1 and HIF-1α. CONCLUSIONS: Taken together, our findings suggest the significance of this positive feedback loop between HIF-1α and SENP1 in contributing to the increased cancer stemness in HCC and hepatocarcinogenesis under hypoxia. Drugs that specifically target SENP1 may offer a potential novel therapeutic approach for HCC.


Assuntos
Carcinoma Hepatocelular/metabolismo , Cisteína Endopeptidases/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neoplasias Hepáticas/metabolismo , Células-Tronco Neoplásicas/metabolismo , Proteína SUMO-1/metabolismo , Animais , Western Blotting , Carcinoma Hepatocelular/patologia , Hipóxia Celular , Linhagem Celular Tumoral , Humanos , Imuno-Histoquímica , Imunoprecipitação , Neoplasias Hepáticas/patologia , Camundongos , Camundongos SCID , Células-Tronco Neoplásicas/patologia , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Microambiente Tumoral
13.
Hepatology ; 63(2): 474-87, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26481868

RESUMO

UNLABELLED: Epigenetic deregulation plays an important role in liver carcinogenesis. Using transcriptome sequencing, we examined the expression of 591 epigenetic regulators in hepatitis B-associated human hepatocellular carcinoma (HCC). We found that aberrant expression of epigenetic regulators was a common event in HCC. We further identified SETDB1 (SET domain, bifurcated 1), an H3K9-specific histone methyltransferase, as the most significantly up-regulated epigenetic regulator in human HCCs. Up-regulation of SETDB1 was significantly associated with HCC disease progression, cancer aggressiveness, and poorer prognosis of HCC patients. Functionally, we showed that knockdown of SETDB1 reduced HCC cell proliferation in vitro and suppressed orthotopic tumorigenicity in vivo. Inactivation of SETDB1 also impeded HCC cell migration and abolished lung metastasis in nude mice. Interestingly, SETDB1 protein was consistently up-regulated in all metastatic foci found in different organs, suggesting that SETDB1 was essential for HCC metastatic progression. Mechanistically, we showed that the frequent up-regulation of SETDB1 in human HCC was attributed to the recurrent SETDB1 gene copy gain at chromosome 1q21. In addition, hyperactivation of specificity protein 1 transcription factor in HCC enhanced SETDB1 expression at the transcriptional level. Furthermore, we identified miR-29 as a negative regulator of SETDB1. Down-regulation of miR-29 expression in human HCC contributed to SETDB1 up-regulation by relieving its post-transcriptional regulation. CONCLUSION: SETDB1 is an oncogene that is frequently up-regulated in human HCCs; the multiplicity of SETDB1 activating mechanisms at the chromosomal, transcriptional, and posttranscriptional levels together facilitates SETDB1 up-regulation in human HCC.


Assuntos
Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/secundário , Regulação Neoplásica da Expressão Gênica , Histona-Lisina N-Metiltransferase/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Proteínas Metiltransferases/genética , Regulação para Cima , Animais , Células Cultivadas , Progressão da Doença , Epigênese Genética , Histona Metiltransferases , Humanos , Masculino , Camundongos , Camundongos Nus
14.
Cell Mol Gastroenterol Hepatol ; 18(3): 101358, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38750898

RESUMO

BACKGROUND & AIMS: Hepatocellular carcinoma (HCC) is a heterogeneous cancer with varying levels of liver tumor initiating or cancer stem cells in the tumors. We aimed to investigate the expression of different liver cancer stem cell (LCSC) markers in human HCCs and identify their regulatory mechanisms in stemness-related cells. METHODS: We used an unbiased, single-marker sorting approach by flow cytometry, fluorescence-activated cell sorting, and transcriptomic analyses on HCC patients' resected specimens. Knockdown approach was used, and relevant functional assays were conducted on the identified targets of interest. RESULTS: Flow cytometry on a total of 60 HCC resected specimens showed significant heterogeneity in the expression of LCSC markers, with CD24, CD13, and EpCAM mainly contributing to this heterogeneity. Concomitant expression of CD24, CD13, and EpCAM was detected in 32 HCC samples, and this was associated with advanced tumor stages. Transcriptomic sequencing on the HCC cells sorted for these individual markers identified epidermal growth factor receptor kinase substrate 8-like protein 3 (EPS8L3) as a common gene associated with the 3 markers and was functionally validated in HCC cells. Knocking down EPS8L3 suppressed the expression of all 3 markers. To search for the upstream regulation of EPS8L3, we found SP1 bound to EPS8L3 promoter to drive EPS8L3 expression. Furthermore, using Akt inhibitor MK2206, we showed that Akt signaling-driven SP1 drove the expression of the 3 LCSC markers. CONCLUSIONS: Our findings suggest that Akt signaling-driven SP1 promotes EPS8L3 expression, which is critical in maintaining the downstream expression of CD24, CD13, and EpCAM. The findings provide insight into potential LCSC-targeting therapeutic strategies.

15.
Theranostics ; 14(2): 892-910, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38169544

RESUMO

Background: The tumor microenvironment of cancers has emerged as a crucial component in regulating cancer stemness and plays a pivotal role in cell-cell communication. However, the specific mechanisms underlying these phenomena remain poorly understood. Methods: We performed the single-cell RNA sequencing (scRNA-seq) on nine HBV-associated hepatocellular carcinoma (HCC) patients. The heterogeneity of the malignant cells in pathway functions, transcription factors (TFs) regulation, overall survival, stemness, as well as ligand-receptor-based intercellular communication with macrophages were characterized. The aggressive and stemness feature for the target tumor subclone was validated by the conduction of in vitro assays including sphere formation, proliferation, Annexin V apoptosis, flow cytometry, siRNA library screening assays, and multiple in vivo preclinical mouse models including mouse hepatoma cell and human HCC cell xenograft models with subcutaneous or orthotopic injection. Results: Our analysis yielded a comprehensive atlas of 31,664 cells, revealing a diverse array of malignant cell subpopulations. Notably, we identified a stemness-related subclone of HCC cells with concurrent upregulation of CD24, CD47, and ICAM1 expression that correlated with poorer overall survival. Functional characterization both in vitro and in vivo validated S100A11 as one of the top downstream mediators for tumor initiation and stemness maintenance of this subclone. Further investigation of cell-cell communication within the tumor microenvironment revealed a propensity for bi-directional crosstalk between this stemness-related subclone and tumor-associated macrophages (TAMs). Co-culture study showed that this interaction resulted in the maintenance of the expression of cancer stem cell markers and driving M2-like TAM polarization towards a pro-tumorigenic niche. We also consolidated an inverse relationship between the proportions of TAMs and tumor-infiltrating T cells. Conclusions: Our study highlighted the critical role of stemness-related cancer cell populations in driving an immunosuppressive tumor microenvironment and identified the S100A11 gene as a key mediator for stemness maintenance in HCC. Moreover, our study provides support that the maintenance of cancer stemness is more attributed to M2 polarization than the recruitment of the TAMs.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Animais , Camundongos , Carcinoma Hepatocelular/patologia , Vírus da Hepatite B , Neoplasias Hepáticas/patologia , Macrófagos/metabolismo , Técnicas de Cocultura , Linhagem Celular Tumoral , Microambiente Tumoral
16.
Cells ; 12(3)2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36766817

RESUMO

Primary liver cancer (PLC), consisting mainly of hepatocellular carcinoma and intrahepatic cholangiocarcinoma, is one of the major causes of cancer-related mortality worldwide. The curative therapy for PLC is surgical resection and liver transplantation, but most PLCs are inoperable at diagnosis. Even after surgery, there is a high rate of tumor recurrence. There is an unmet clinical need to discover more effective treatment options for advanced PLCs. Pre-clinical mouse models in PLC research have played a critical role in identifying key oncogenic drivers and signaling pathways in hepatocarcinogenesis. Furthermore, recent advances in single-cell RNA sequencing (scRNA-seq) have provided an unprecedented degree of resolution in such characterization. In this review, we will summarize the recent studies that utilized pre-clinical mouse models with the combination of scRNA-seq to provide an understanding of different aspects of PLC. We will focus particularly on the potentially actionable targets regarding the cellular and molecular components. We anticipate that the findings in mouse models could complement those in patients. With more defined etiological background, mouse models may provide valuable insights.


Assuntos
Neoplasias dos Ductos Biliares , Neoplasias Hepáticas , Animais , Camundongos , Neoplasias Hepáticas/patologia , Recidiva Local de Neoplasia , Modelos Animais de Doenças , Análise de Célula Única , Ductos Biliares Intra-Hepáticos/patologia
17.
Cell Mol Gastroenterol Hepatol ; 15(6): 1325-1350, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36806581

RESUMO

BACKGROUND & AIMS: Metabolic reprogramming is recognized as a cancer hallmark intimately linked to tumor hypoxia, which supports rapid tumor growth and mitigates the consequential oxidative stress. Phosphofructokinase-fructose bisphosphatase (PFKFB) is a family of bidirectional glycolytic enzymes possessing both kinase and phosphatase functions and has emerged as important oncogene in multiple types of cancer. However, its clinical relevance, functional significance, and underlying mechanistic insights in hepatocellular carcinoma (HCC), the primary malignancy that develops in the most important metabolic organ, has never been addressed. METHODS: PFKFB4 expression was examined by RNA sequencing in The Cancer Genome Atlas and our in-house HCC cohort. The up-regulation of PFKFB4 expression was confirmed further by quantitative polymerase chain reaction in an expanded hepatitis B virus-associated HCC cohort followed by clinicopathologic correlation analysis. Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated protein 9 (Cas9)-mediated PFKFB4 knockout cells were generated for functional characterization in vivo, targeted metabolomic profiling, as well as RNA sequencing analysis to comprehensively examine the impact of PFKFB4 loss in HCC. RESULTS: PFKFB4 expression was up-regulated significantly in HCC and correlated positively with TP53 and TSC2 loss-of-function mutations. In silico transcriptome-based analysis further revealed PFKFB4 functions as a critical hypoxia-inducible gene. Clinically, PFKFB4 up-regulation was associated with more aggressive tumor behavior. Functionally, CRISPR/Cas9-mediated PFKFB4 knockout significantly impaired in vivo HCC development. Targeted metabolomic profiling revealed that PFKFB4 functions as a phosphatase in HCC and its ablation caused an accumulation of metabolites in downstream glycolysis and the pentose phosphate pathway. In addition, PFKFB4 loss induced hypoxia-responsive genes in glycolysis and reactive oxygen species detoxification. Conversely, ectopic PFKFB4 expression conferred sorafenib resistance. CONCLUSIONS: PFKFB4 up-regulation supports HCC development and shows therapeutic implications.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Linhagem Celular Tumoral , Fosfofrutoquinase-2/genética , Fosfofrutoquinase-2/metabolismo , Neoplasias Hepáticas/genética , Hipóxia , Proteína Supressora de Tumor p53/genética
18.
Technol Cancer Res Treat ; 21: 15330338221142729, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36476060

RESUMO

Introduction: The application of single-cell RNA sequencing to delineate tissue heterogeneity and complexity has become increasingly popular. Given its tremendous resolution and high-dimensional capacity for in-depth investigation, single-cell RNA sequencing offers an unprecedented research power. Although some popular software packages are available for single-cell RNA sequencing data analysis and visualization, it is still a big challenge for their usage, as they provide only a command-line interface and require significant level of bioinformatics skills. Methods: We have developed scAnalyzeR, which is a single-cell RNA sequencing analysis pipeline with an interactive and user-friendly graphical interface for analyzing and visualizing single-cell RNA sequencing data. It accepts single-cell RNA sequencing data from various technology platforms and different model organisms (human and mouse) and allows flexibility in input file format. It provides functionalities for data preprocessing, quality control, basic summary statistics, dimension reduction, unsupervised clustering, differential gene expression, gene set enrichment analysis, correlation analysis, pseudotime cell trajectory inference, and various visualization plots. It also provides default parameters for easy usage and allows a wide range of flexibility and optimization by accepting user-defined options. It has been developed as a docker image that can be run in any docker-supported environment including Linux, Mac, and Windows, without installing any dependencies. Results: We compared the performance of scAnalyzeR with 2 other graphical tools that are popular for analyzing single-cell RNA sequencing data. The comparison was based on the comprehensiveness of functionalities, ease of usage and flexibility, and execution time. In general, scAnalyzeR outperformed the other tested counterparts in various aspects, demonstrating its superior overall performance. To illustrate the usefulness of scAnalyzeR in cancer research, we have analyzed the in-house liver cancer single-cell RNA sequencing dataset. Liver cancer tumor cells were revealed to have multiple subpopulations with distinctive gene expression signatures. Conclusion: scAnalyzeR has comprehensive functionalities and demonstrated usability. We anticipate more functionalities to be adopted in the future development.


Assuntos
Neoplasias Hepáticas , Humanos , Animais , Camundongos , Neoplasias Hepáticas/genética , Análise de Sequência de RNA
19.
Cell Mol Gastroenterol Hepatol ; 14(3): 513-525, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35577269

RESUMO

Hepatocellular carcinoma (HCC) is characterized by its high degrees of both inter- and intratumoral heterogeneity. Its complex tumor microenvironment is also crucial in promoting tumor progression. Recent advances in single-cell RNA sequencing provide an important highway to characterize the underlying pathogenesis and heterogeneity of HCC in an unprecedented degree of resolution. This review discusses the up-to-date discoveries from the latest studies of HCC with respect to the strength of single-cell RNA sequencing. We discuss its use in the dissection of the landscape of the intricate HCC ecosystem and highlight the major features at cellular levels, including the malignant cells, different immune cell types, and the various cell-cell interactions, which are crucial for developing effective immunotherapies. Finally, its translational applications will be discussed. Altogether, these explorations may give us some hints at the tumor growth and progression and drug resistance and recurrence, particularly in this era of personalized medicine.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Carcinoma Hepatocelular/patologia , Ecossistema , Humanos , Neoplasias Hepáticas/patologia , Transcriptoma/genética , Microambiente Tumoral/genética
20.
Front Med (Lausanne) ; 9: 860395, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35865168

RESUMO

Background: Lines of evidence implicate CENPF and FOXM1 may have novel co-operative roles in driving hepatocellular carcinoma (HCC). Objective: We investigated the clinicopathological correlation, functional characterization, molecular mechanism and translational significance of CENPF and FOXM1. Methods: We carried out integrative studies investigating functional synergism of CENPF and FOXM1 in HCC and its metastasis. Human HCC samples, HCC cell lines and mouse model were used in the studies. Stable knockdown, q-PCR, Western blotting, whole-transcriptomic sequencing (RNA-seq), as well as cell and mouse assays were performed. Results: Upon clinicopathological correlation, we found that co-overexpression of CENPF and FOXM1 in human HCCs was associated with more aggressive tumor behavior including presence of venous invasion, tumor microsatellite formation, and absence of tumor encapsulation. Moreover, co-silencing FOXM1 and CENPF using shRNA approach in HCC cell lines resulted in significantly reduced cell proliferation. Furthermore, our RNA-seq and differential gene expression analysis delineated that CENPF and FOXM1 co-regulated a specific set of target genes in various metabolic processes and oncogenic signaling pathways. Among them, POLD1, which encodes the catalytic subunit of DNA polymerase δ, was ranked as the top downstream target co-regulated by CENPF and FOXM1. POLD1 expression was positively correlated with that of FOXM1 and CENPF in HCCs. In addition, POLD1 expression was significantly upregulated in HCC tumors. Functionally, in vivo orthotopic injection model showed that stable knockdown of POLD1 in HCC cells suppressed tumor incidence and tumorigenicity and had a trend of diminished lung metastasis. Conclusion: Taken together, our data suggest that CENPF and FOXM1 could synergistically support hepatocarcinogenesis via the regulation of POLD1. CENPF and FOXM1 may represent new vulnerabilities to novel drug-based therapy in HCC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA