RESUMO
Methicillin-resistant Staphylococcus aureus (MRSA) is a leading cause of morbidity and death. Phenol-soluble modulins (PSMs) are recently-discovered toxins with a key impact on the development of Staphylococcus aureus infections. Allelic variants of PSMs and their potential impact on pathogen success during infection have not yet been described. Here we show that the clonal complex (CC) 30 lineage, a major cause of hospital-associated sepsis and hematogenous complications, expresses an allelic variant of the PSMα3 peptide. We found that this variant, PSMα3N22Y, is characteristic of CC30 strains and has significantly reduced cytolytic and pro-inflammatory potential. Notably, CC30 strains showed reduced cytolytic and chemotactic potential toward human neutrophils, and increased hematogenous seeding in a bacteremia model, compared to strains in which the genome was altered to express non-CC30 PSMα3. Our findings describe a molecular mechanism contributing to attenuated pro-inflammatory potential in a main MRSA lineage. They suggest that reduced pathogen recognition via PSMs allows the bacteria to evade elimination by innate host defenses during bloodstream infections. Furthermore, they underscore the role of point mutations in key S. aureus toxin genes in that adaptation and the pivotal importance PSMs have in defining key S. aureus immune evasion and virulence mechanisms.
Assuntos
Bacteriemia/genética , Toxinas Bacterianas/genética , Toxinas Bacterianas/imunologia , Infecções Estafilocócicas/genética , Infecções Estafilocócicas/imunologia , Animais , Bacteriemia/imunologia , Western Blotting , Quimiotaxia de Leucócito/imunologia , Cromatografia Líquida de Alta Pressão , Modelos Animais de Doenças , Humanos , Evasão da Resposta Imune/genética , Evasão da Resposta Imune/imunologia , Imunidade Inata/genética , Imunidade Inata/imunologia , Staphylococcus aureus Resistente à Meticilina , Infiltração de Neutrófilos/imunologia , Neutrófilos/imunologiaRESUMO
Phenol-soluble modulins (PSMs) are amphipathic, alpha-helical peptides that are secreted by staphylococci in high amounts in a quorum-sensing-controlled fashion. Studies performed predominantly in Staphylococcus aureus showed that PSMs structure biofilms, which results in reduced biofilm mass, while it has also been reported that S. aureus PSMs stabilize biofilms due to amyloid formation. We here analyzed the roles of PSMs in in vitro and in vivo biofilms of Staphylococcus epidermidis, the leading cause of indwelling device-associated biofilm infection. We produced isogenic deletion mutants for every S. epidermidis psm locus and a sequential deletion mutant in which production of all PSMs was abolished. In vitro analysis substantiated the role of all PSMs in biofilm structuring. PSM-dependent biofilm expansion was not observed, in accordance with our finding that no S. epidermidis PSM produced amyloids. In a mouse model of indwelling device-associated infection, the total psm deletion mutant had a significant defect in dissemination. Notably, the total psm mutant produced a significantly more substantial biofilm on the implanted catheter than the wild-type strain. Our study, which for the first time directly quantified the impact of PSMs on biofilm expansion on an implanted device, shows that the in vivo biofilm infection phenotype in S. epidermidis is in accordance with the PSM biofilm structuring and detachment model, which has important implications for the potential therapeutic application of quorum-sensing blockers.
Assuntos
Toxinas Bacterianas/metabolismo , Biofilmes/crescimento & desenvolvimento , Infecções Relacionadas a Cateter/microbiologia , Infecções Estafilocócicas/microbiologia , Staphylococcus epidermidis/patogenicidade , Animais , Toxinas Bacterianas/genética , Cateteres de Demora/microbiologia , Contagem de Colônia Microbiana , Modelos Animais de Doenças , Humanos , Camundongos , Deleção de Sequência , Staphylococcus epidermidis/crescimento & desenvolvimento , Staphylococcus epidermidis/metabolismoRESUMO
Staphylococci are frequently implicated in human infections, and continue to pose a therapeutic dilemma due to their ability to form deeply seated microbial communities, known as biofilms, on the surfaces of implanted medical devices and host tissues. Biofilm development has been proposed to occur in three stages: (1) attachment, (2) proliferation/structuring, and (3) detachment/dispersal. Although research within the last several decades has implicated multiple molecules in the roles as effectors of staphylococcal biofilm proliferation/structuring and detachment/dispersal, to date, only phenol soluble modulins (PSMs) have been consistently demonstrated to serve in this role under both in vitro and in vivo settings. PSMs are regulated directly through a density-dependent manner by the accessory gene regulator (Agr) system. They disrupt the non-covalent forces holding the biofilm extracellular matrix together, which is necessary for the formation of channels, a process essential for the delivery of nutrients to deeper biofilm layers, and for dispersal/dissemination of clusters of biofilm to distal organs in acute infection. Given their relevance in both acute and chronic biofilm-associated infections, the Agr system and the psm genes hold promise as potential therapeutic targets.