Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Hum Mol Genet ; 29(2): 248-263, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31816041

RESUMO

WDR62 mutations that result in protein loss, truncation or single amino-acid substitutions are causative for human microcephaly, indicating critical roles in cell expansion required for brain development. WDR62 missense mutations that retain protein expression represent partial loss-of-function mutants that may therefore provide specific insights into radial glial cell processes critical for brain growth. Here we utilized CRISPR/Cas9 approaches to generate three strains of WDR62 mutant mice; WDR62 V66M/V66M and WDR62R439H/R439H mice recapitulate conserved missense mutations found in humans with microcephaly, with the third strain being a null allele (WDR62stop/stop). Each of these mutations resulted in embryonic lethality to varying degrees and gross morphological defects consistent with ciliopathies (dwarfism, anophthalmia and microcephaly). We find that WDR62 mutant proteins (V66M and R439H) localize to the basal body but fail to recruit CPAP. As a consequence, we observe deficient recruitment of IFT88, a protein that is required for cilia formation. This underpins the maintenance of radial glia as WDR62 mutations caused premature differentiation of radial glia resulting in reduced generation of neurons and cortical thinning. These findings highlight the important role of the primary cilium in neocortical expansion and implicate ciliary dysfunction as underlying the pathology of MCPH2 patients.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Cílios/metabolismo , Ciliopatias/genética , Microcefalia/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Neocórtex/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Anoftalmia/embriologia , Anoftalmia/genética , Anoftalmia/metabolismo , Apoptose/genética , Sistemas CRISPR-Cas , Proteínas de Ciclo Celular/genética , Células Cultivadas , Cílios/genética , Cílios/patologia , Ciliopatias/embriologia , Ciliopatias/metabolismo , Ciliopatias/patologia , Nanismo/embriologia , Nanismo/genética , Nanismo/metabolismo , Células Ependimogliais/citologia , Células Ependimogliais/metabolismo , Células Ependimogliais/patologia , Fibroblastos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microcefalia/embriologia , Microcefalia/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Mutação de Sentido Incorreto , Neocórtex/embriologia , Proteínas do Tecido Nervoso/genética , Neurogênese/genética , Neuroglia/citologia , Neuroglia/metabolismo , Neurônios/metabolismo , Proteínas Supressoras de Tumor/genética
2.
J Cell Sci ; 133(6)2020 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-32079655

RESUMO

F-actin dynamics are known to control insulin secretion, but the point of intersection with the stimulus-secretion cascade is unknown. Here, using multiphoton imaging of ß cells isolated from Lifeact-GFP transgenic mice, we show that glucose stimulation does not cause global changes in subcortical F-actin. Instead, we observe spatially discrete and transient F-actin changes around each fusing granule. This F-actin remodelling is dependent on actin nucleation and is observed for granule fusion induced by either glucose or high potassium stimulation. Using GFP-labelled proteins, we identify local enrichment of Arp3, dynamin 2 and clathrin, all occurring after granule fusion, suggesting early recruitment of an endocytic complex to the fusing granules. Block of Arp2/3 activity with drugs or shRNA inhibits F-actin coating, traps granules at the cell membrane and reduces insulin secretion. Block of formin-mediated actin nucleation also blocks F-actin coating, but has no effect on insulin secretion. We conclude that local Arp2/3-dependent actin nucleation at the sites of granule fusion plays an important role in post-fusion granule dynamics and in the regulation of insulin secretion.


Assuntos
Complexo 2-3 de Proteínas Relacionadas à Actina , Actinas , Células Secretoras de Insulina , Complexo 2-3 de Proteínas Relacionadas à Actina/fisiologia , Actinas/genética , Actinas/metabolismo , Animais , Exocitose , Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Camundongos
3.
Cell Mol Life Sci ; 79(1): 21, 2021 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-34971439

RESUMO

Inflammation is vital to protect the host against foreign organism invasion and cellular damage. It requires tight and concise gene expression for regulation of pro- and anti-inflammatory gene expression in immune cells. Dysregulated immune responses caused by gene mutations and errors in post-transcriptional regulation can lead to chronic inflammatory diseases and cancer. The mechanisms underlying post-transcriptional gene expression regulation include mRNA splicing, mRNA export, mRNA localisation, mRNA stability, RNA/protein interaction, and post-translational events such as protein stability and modification. The majority of studies to date have focused on transcriptional control pathways. However, post-transcriptional regulation of mRNA in eukaryotes is equally important and related information is lacking. In this review, we will focus on the mechanisms involved in the pre-mRNA splicing events, mRNA surveillance, RNA degradation pathways, disorders or symptoms caused by mutations or errors in post-transcriptional regulation during innate immunity especially toll-like receptor mediated pathways.


Assuntos
Doença/genética , Inflamação/genética , RNA/metabolismo , Animais , Humanos , Imunidade/genética , Degradação do RNAm Mediada por Códon sem Sentido/genética , Moléculas com Motivos Associados a Patógenos/metabolismo , RNA/genética
4.
Int J Mol Sci ; 22(17)2021 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-34502512

RESUMO

Primary cilia are non-motile, cell cycle-associated organelles that can be found on most vertebrate cell types. Comprised of microtubule bundles organised into an axoneme and anchored by a mature centriole or basal body, primary cilia are dynamic signalling platforms that are intimately involved in cellular responses to their extracellular milieu. Defects in ciliogenesis or dysfunction in cilia signalling underlie a host of developmental disorders collectively referred to as ciliopathies, reinforcing important roles for cilia in human health. Whilst primary cilia have long been recognised to be present in striated muscle, their role in muscle is not well understood. However, recent studies indicate important contributions, particularly in skeletal muscle, that have to date remained underappreciated. Here, we explore recent revelations that the sensory and signalling functions of cilia on muscle progenitors regulate cell cycle progression, trigger differentiation and maintain a commitment to myogenesis. Cilia disassembly is initiated during myoblast fusion. However, the remnants of primary cilia persist in multi-nucleated myotubes, and we discuss their potential role in late-stage differentiation and myofiber formation. Reciprocal interactions between cilia and the extracellular matrix (ECM) microenvironment described for other tissues may also inform on parallel interactions in skeletal muscle. We also discuss emerging evidence that cilia on fibroblasts/fibro-adipogenic progenitors and myofibroblasts may influence cell fate in both a cell autonomous and non-autonomous manner with critical consequences for skeletal muscle ageing and repair in response to injury and disease. This review addresses the enigmatic but emerging role of primary cilia in satellite cells in myoblasts and myofibers during myogenesis, as well as the wider tissue microenvironment required for skeletal muscle formation and homeostasis.


Assuntos
Centrossomo/metabolismo , Cílios/fisiologia , Músculo Esquelético/fisiologia , Animais , Axonema , Ciclo Celular/fisiologia , Diferenciação Celular/fisiologia , Cílios/metabolismo , Citoesqueleto , Matriz Extracelular , Humanos , Desenvolvimento Muscular/fisiologia , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Mioblastos/metabolismo , Organelas , Transdução de Sinais
5.
J Cell Mol Med ; 23(12): 8151-8160, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31565865

RESUMO

Suppressor of morphogenesis in genitalia 1 (SMG1) and ataxia telangiectasia mutated (ATM) are members of the PI3-kinase like-kinase (PIKK) family of proteins. ATM is a well-established tumour suppressor. Loss of one or both alleles of ATM results in an increased risk of cancer development, particularly haematopoietic cancer and breast cancer in both humans and mouse models. In mice, total loss of SMG1 is embryonic lethal and loss of a single allele results in an increased rate of cancer development, particularly haematopoietic cancers and lung cancer. In this study, we generated mice deficient in Atm and lacking one allele of Smg1, Atm-/- Smg1gt/+ mice. These mice developed cancers more rapidly than either of the parental genotypes, and all cancers were haematopoietic in origin. The combined loss of Smg1 and Atm resulted in a higher level of basal DNA damage and oxidative stress in tissues than loss of either gene alone. Furthermore, Atm-/- Smg1gt/+ mice displayed increased cytokine levels in haematopoietic tissues compared with wild-type animals indicating the development of low-level inflammation and a pro-tumour microenvironment. Overall, our data demonstrated that combined loss of Atm expression and decreased Smg1 expression increases haematopoietic cancer development.


Assuntos
Dano ao DNA , Neoplasias Hematológicas/genética , Estresse Oxidativo , Proteínas Serina-Treonina Quinases/genética , Animais , Proteínas Mutadas de Ataxia Telangiectasia/deficiência , Proteínas Mutadas de Ataxia Telangiectasia/genética , Carcinogênese/genética , Carcinogênese/metabolismo , Células Cultivadas , Embrião de Mamíferos/citologia , Fibroblastos/metabolismo , Fibroblastos/efeitos da radiação , Raios gama , Neoplasias Hematológicas/metabolismo , Neoplasias Hematológicas/patologia , Heterozigoto , Estimativa de Kaplan-Meier , Longevidade/genética , Linfoma/genética , Linfoma/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Serina-Treonina Quinases/deficiência
6.
PLoS Genet ; 9(2): e1003298, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23408915

RESUMO

Single-stranded DNA binding proteins (SSBs) regulate multiple DNA transactions, including replication, transcription, and repair. We recently identified SSB1 as a novel protein critical for the initiation of ATM signaling and DNA double-strand break repair by homologous recombination. Here we report that germline Ssb1(-/-) embryos die at birth from respiratory failure due to severe rib cage malformation and impaired alveolar development, coupled with additional skeletal defects. Unexpectedly, Ssb1(-/-) fibroblasts did not exhibit defects in Atm signaling or γ-H2ax focus kinetics in response to ionizing radiation (IR), and B-cell specific deletion of Ssb1 did not affect class-switch recombination in vitro. However, conditional deletion of Ssb1 in adult mice led to increased cancer susceptibility with broad tumour spectrum, impaired male fertility with testicular degeneration, and increased radiosensitivity and IR-induced chromosome breaks in vivo. Collectively, these results demonstrate essential roles of Ssb1 in embryogenesis, spermatogenesis, and genome stability in vivo.


Assuntos
Proteínas de Transporte , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Reparo do DNA , Proteínas Nucleares , Proteínas Supressoras da Sinalização de Citocina , Animais , Linfócitos B/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Quebra Cromossômica/efeitos da radiação , Reparo do DNA/genética , Reparo do DNA/efeitos da radiação , Fibroblastos/citologia , Fibroblastos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Instabilidade Genômica/genética , Histonas/genética , Histonas/metabolismo , Recombinação Homóloga/genética , Humanos , Infertilidade Masculina/genética , Masculino , Camundongos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Tolerância a Radiação/genética , Radiação Ionizante , Transdução de Sinais/genética , Espermatogênese , Proteínas Supressoras da Sinalização de Citocina/deficiência , Proteínas Supressoras da Sinalização de Citocina/genética , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Fatores de Transcrição
7.
Proc Natl Acad Sci U S A ; 110(4): E285-94, 2013 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-23277562

RESUMO

SMG1 is a member of the phosphoinositide kinase-like kinase family of proteins that includes ATM, ATR, and DNA-PK, proteins with known roles in DNA damage and cellular stress responses. SMG1 has a well-characterized role in nonsense-mediated decay as well as suggested roles in the DNA damage response, resistance to oxidative stress, regulation of hypoxic responses, and apoptosis. To understand the roles of SMG1 further, we generated a Genetrap Smg1 mouse model. Smg1 homozygous KO mice were early embryonic lethal, but Smg1 heterozygous mice showed a predisposition to a range of cancers, particularly lung and hematopoietic malignancies, as well as development of chronic inflammation. These mice did not display deficiencies in known roles of SMG1, including nonsense-mediated decay. However, they showed elevated basal tissue and serum cytokine levels, indicating low-level inflammation before the development of tumors. Smg1 heterozygous mice also showed evidence of oxidative damage in tissues. These data suggest that the inflammation observed in Smg1 haploinsufficiency contributes to susceptibility to cancer and that Smg1-deficient animals represent a model of inflammation-enhanced cancer development.


Assuntos
Inflamação/genética , Neoplasias Experimentais/genética , Proteínas Serina-Treonina Quinases/deficiência , Proteínas Serina-Treonina Quinases/genética , Animais , Sequência de Bases , DNA Complementar/genética , Modelos Animais de Doenças , Predisposição Genética para Doença , Haploinsuficiência , Neoplasias Hematológicas/enzimologia , Neoplasias Hematológicas/etiologia , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/patologia , Homozigoto , Inflamação/complicações , Inflamação/enzimologia , Inflamação/patologia , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/etiologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Dados de Sequência Molecular , Neoplasias Experimentais/enzimologia , Neoplasias Experimentais/etiologia , Neoplasias Experimentais/patologia
8.
Hepatology ; 59(6): 2238-50, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24470239

RESUMO

UNLABELLED: It is unclear how proliferating cells elicit suppression on cell proliferation and how cancer cells evade this growth suppression. Using a loss-of-function screening of the human kinome and phosphatome to identify genes suppressing tumor initiation in human hepatocellular carcinoma (HCC), we identified 19 genes and characterized one of the top-scoring tumor suppressor candidates, protein tyrosine phosphatase receptor type F (PTPRF). We found that PTPRF was induced during cell proliferation by cell-cell contact. Ectopic expression of wild-type PTPRF, but not the phosphatase-inactive mutant, suppressed cell proliferation and colony formation in soft-agar assays. In contrast, PTPRF silencing led to cell hyperproliferation, enhanced tumor colony formation in soft agar, and increased xenograft tumor growth in nude mice. Mechanistically, PTPRF silencing showed aberrant ERK-dependent signaling including the phosphorylation/stabilization of v-myc avian myelocytomatosis viral oncogene homolog (MYC) through the direct activation of v-src avian sarcoma viral oncogene homolog (SRC) and suppression of PP2A. This PTPRF-mediated growth suppression during cell proliferation functioned independently of the Hippo-Yap pathway. Clinically, PTPRF was down-regulated in 42% HCC (37/89), 67% gastric cancer (27/40), and 100% colorectal cancer (40/40). PTPRF up-regulation was found in 24% HCC (21/89) and associated with better clinical outcomes. CONCLUSION: A novel PTPRF-mediated growth suppression pathway was identified by way of a functional genomics screening in human hepatoma cells. Induction of PTPRF by cell-cell contact during cell proliferation quenched the activated ERK-dependent proliferation signaling to prevent cell hyperproliferation and tumor initiation. PTPRF down-regulation in HCC facilitated tumor development. Our findings shed light on how cancer cells can evade growth suppression and open a new avenue for future development of anticancer therapies.


Assuntos
Carcinoma Hepatocelular/enzimologia , Genes Supressores de Tumor , Genômica/métodos , Neoplasias Hepáticas/enzimologia , Fosfotransferases/metabolismo , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/metabolismo , Animais , Regulação para Baixo/genética , Humanos , Sistema de Sinalização das MAP Quinases/genética , Camundongos , Camundongos Nus , Neoplasias Experimentais , Proteína Fosfatase 2/genética , Proteína Fosfatase 2/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas pp60(c-src)/metabolismo , Interferência de RNA
9.
J Leukoc Biol ; 109(3): 593-603, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32829531

RESUMO

The innate immune response to LPS is highly dynamic yet tightly regulated. The majority of studies of gene expression have focussed on transcription. However, it is also important to understand how post-transcriptional pathways are regulated in response to inflammatory stimuli as the rate of RNA degradation relative to new transcription is important for overall expression. RNA decay pathways include nonsense-mediated decay, the RNA decay exosome, P-body localized deadenylation, decapping and degradation, and AU-rich element targeted decay mediated by tristetraprolin. Here, bone marrow-derived Mϕs were treated with LPS over a time course of 0, 2, 6, and 24 h and the transcriptional profiles were analyzed by RNA sequencing. The data show that components of RNA degradation pathways are regulated during an LPS response. Processing body associated decapping enzyme DCP2 and regulatory subunit DCP1A, and 5' exonuclease XRN1 and sequence specific RNA decay pathways were upregulated. Nonsense mediated decay was also increased in response to LPS induced signaling, initially by increased activation and at later timepoints at the mRNA and protein levels. This leads to increased nonsense mediated decay efficiency across the 24 h following LPS treatment. These findings suggest that LPS activation of Mϕs results in targeted regulation of RNA degradation pathways in order to change how subsets of mRNAs are degraded during an inflammatory response.


Assuntos
Lipopolissacarídeos/farmacologia , Macrófagos/metabolismo , Estabilidade de RNA/efeitos dos fármacos , Animais , Regulação da Expressão Gênica/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Proteínas/metabolismo , Estabilidade de RNA/genética , Reprodutibilidade dos Testes , Análise de Sequência de RNA
10.
Commun Biol ; 4(1): 645, 2021 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-34059773

RESUMO

WDR62 is a scaffold protein involved in centriole duplication and spindle assembly during mitosis. Mutations in WDR62 can cause primary microcephaly and premature ovarian insufficiency. We have generated a genetrap mouse model deficient in WDR62 and characterised the developmental effects of WDR62 deficiency during meiosis in the testis. We have found that WDR62 deficiency leads to centriole underduplication in the spermatocytes due to reduced or delayed CEP63 accumulation in the pericentriolar matrix. This resulted in prolonged metaphase that led to apoptosis. Round spermatids that inherited a pair of centrioles progressed through spermiogenesis, however, manchette removal was delayed in WDR62 deficient spermatids due to delayed Katanin p80 accumulation in the manchette, thus producing misshapen spermatid heads with elongated manchettes. In mice, WDR62 deficiency resembles oligoasthenoteratospermia, a common form of subfertility in men that is characterised by low sperm counts, poor motility and abnormal morphology. Therefore, proper WDR62 function is necessary for timely spermatogenesis and spermiogenesis during male reproduction.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Centríolos/genética , Proteínas do Tecido Nervoso/metabolismo , Espermatogênese/genética , Animais , Ciclo Celular/genética , Proteínas de Ciclo Celular/genética , Centríolos/metabolismo , Citoesqueleto/metabolismo , Feminino , Masculino , Meiose , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/genética , Espermátides/metabolismo , Espermatogênese/fisiologia , Espermatozoides/metabolismo , Testículo/metabolismo
11.
Front Cell Dev Biol ; 8: 549353, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33042990

RESUMO

Primary microcephaly genes (MCPH) are required for the embryonic expansion of the mammalian cerebral cortex. However, MCPH mutations may spare growth in other regions of the developing forebrain which reinforces context-dependent functions for distinct MCPH genes in neurodevelopment. Mutations in the MCPH2 gene, WD40-repeat protein 62 (WDR62), are causative of primary microcephaly and cortical malformations in humans. WDR62 is a spindle microtubule-associated phosphoprotein that is required for timely and oriented cell divisions. Recent studies in rodent models confirm that WDR62 loss or mutation causes thinning of the neocortex and disrupted proliferation of apical progenitors reinforcing critical requirements in the maintenance of radial glia. However, potential contributions for WDR62 in hippocampal development had not been previously defined. Using CRISPR/Cas9 gene editing, we generated mouse models with patient-derived non-synonymous missense mutations (WDR62V66M and WDR62R439H) and a null mutation (herein referred to as WDR62Stop) for comparison. We find that WDR62 deletion or mutation resulted in a significant reduction in the thickness of the hippocampal ventricular zone and the area of the dentate gyrus (DG). This was associated with the mitotic arrest and depletion of radial glia and intermediate progenitors in the ammonic neuroepithelium. As a consequence, we find that the number of mitotic dentate precursors in the migratory stream and granule neurons in the DG was reduced with WDR62 mutation. These findings reveal that WDR62 is required for neurogenesis and the growth of the hippocampus during embryonic development.

12.
Stem Cell Reports ; 15(4): 817-826, 2020 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-32946803

RESUMO

Centrosome reduction and redistribution of pericentriolar material (PCM) coincides with cardiomyocyte transitions to a post-mitotic and matured state. However, it is unclear whether centrosome changes are a cause or consequence of terminal differentiation. We validated that centrosomes were intact and functional in proliferative human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs), consistent with their immature phenotype. We generated acentrosomal hPSC-CMs, through pharmacological inhibition of centriole duplication, and showed that centrosome loss was sufficient to promote post-mitotic transitions and aspects of cardiomyocyte maturation. As Hippo kinases are activated during post-natal cardiac maturation, we pharmacologically activated the Hippo pathway using C19, which was sufficient to trigger centrosome disassembly and relocalization of PCM components to perinuclear membranes. This was due to specific activation of Hippo kinases, as direct inhibition of YAP-TEAD interactions with verteporfin had no effect on centrosome organization. This suggests that Hippo kinase-centrosome remodeling may play a direct role in cardiac maturation.


Assuntos
Diferenciação Celular , Centrossomo/metabolismo , Miócitos Cardíacos/citologia , Proliferação de Células , Ventrículos do Coração/citologia , Via de Sinalização Hippo , Humanos , Mitose , Células-Tronco Pluripotentes/citologia , Proteínas Serina-Treonina Quinases/metabolismo
13.
Mol Neurobiol ; 55(7): 5409-5424, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28940170

RESUMO

Genetic disruptions of spindle/centrosome-associated WD40-repeat protein 62 (WDR62) are causative for autosomal recessive primary microcephaly (MCPH) and a broader range of cortical malformations. Since the identification of WDR62 as encoded by the MCPH2 locus in 2010, recent studies that have deleted/depleted WDR62 in various animal models of cortical development have highlighted conserved functions in brain growth. Here, we provide a timely review of our current understanding of WDR62 contributions in the self-renewal, expansion and fate specification of neural stem and progenitor cells that are critical for neocortical development. Recent studies have revealed multiple functions for WDR62 in the regulation of spindle organization, mitotic progression and the duplication and biased inheritance of centrosomes during asymmetric divisions. We also discuss recently elaborated WDR62 interaction partners that include Aurora and c-Jun N-terminal kinases as part of complex signalling mechanisms that may define its neural functions. These studies provide new insights into the molecular and cellular processes that are required for brain formation and implicated in the genesis of primary microcephaly.


Assuntos
Córtex Cerebral/crescimento & desenvolvimento , Córtex Cerebral/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Animais , Aurora Quinases/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases , Modelos Biológicos , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Fuso Acromático/metabolismo
14.
Mech Dev ; 147: 37-48, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28939119

RESUMO

Hedgehog (Hh) signalling, Fibroblast growth factor 10 (Fgf10) and Forkhead box F1 (Foxf1) are each individually important for directing pulmonary branch formation but their interactions are not well understood. Here we demonstrate that Hh signalling is vital in regulating Foxf1 and Fgf10 expression during branching. The Hedgehog receptor Patched1 (Ptch1) was conditionally inactivated in the lung mesenchyme by Dermo1-Cre in vivo or using a recombinant Cre recombinase protein (HNCre) in lung cultures resulting in cell autonomous activation of Hh signalling. Homozygous mesenchymal Ptch1 deleted embryos (Dermo1Cre+/-;Ptch1lox/lox) showed secondary branching and lobe formation defects. Fgf10 expression is spatially reduced in the distal tip of Dermo1Cre+/-;Ptch1lox/lox lungs and addition of Fgf10 recombinant protein to these lungs in culture has shown partial restoration of branching, indicating Ptch1 function patterns Fgf10 to direct lung branching. Foxf1 expression is upregulated in Dermo1Cre+/-;Ptch1lox/lox lungs, suggesting Foxf1 may mediate Hh signalling effects in the lung mesenchyme. In vitro HNCre-mediated Ptch1 deleted lung explants support the in vivo observations, with evidence of mesenchyme hyperproliferation and this is consistent with the previously reported role of Hh signalling in maintaining mesenchymal cell survival. Consequently it is concluded that during early pseudoglandular stage of lung development Ptch1 patterns Fgf10 and regulates Foxf1 expression in the lung mesenchyme to direct branch formation and this is essential for proper lobe formation and lung function.


Assuntos
Fator 10 de Crescimento de Fibroblastos/genética , Fatores de Transcrição Forkhead/genética , Pulmão/metabolismo , Organogênese/genética , Receptor Patched-1/genética , Animais , Fator 10 de Crescimento de Fibroblastos/metabolismo , Fator 10 de Crescimento de Fibroblastos/farmacologia , Fatores de Transcrição Forkhead/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Integrases/genética , Integrases/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/crescimento & desenvolvimento , Camundongos , Camundongos Transgênicos , Técnicas de Cultura de Órgãos , Organogênese/efeitos dos fármacos , Receptor Patched-1/deficiência , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA