Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 106(8): 2571-6, 2009 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-19190181

RESUMO

The L1 stalk is a mobile domain of the large ribosomal subunit E site that interacts with the elbow of deacylated tRNA during protein synthesis. Here, by using single-molecule FRET, we follow the real-time dynamics of the L1 stalk and observe its movement relative to the body of the large subunit between at least 3 distinct conformational states: open, half-closed, and fully closed. Pretranslocation ribosomes undergo spontaneous fluctuations between the open and fully closed states. In contrast, posttranslocation ribosomes containing peptidyl-tRNA and deacylated tRNA in the classical P/P and E/E states, respectively, are fixed in the half-closed conformation. In ribosomes with a vacant E site, the L1 stalk is observed either in the fully closed or fully open conformation. Several lines of evidence show that the L1 stalk can move independently of intersubunit rotation. Our findings support a model in which the mobility of the L1 stalk facilitates binding, movement, and release of deacylated tRNA by remodeling the structure of the 50S subunit E site between 3 distinct conformations, corresponding to the E/E vacant, P/E hybrid, and classical states.


Assuntos
Ribossomos/metabolismo , Acilação , Transferência Ressonante de Energia de Fluorescência , Conformação de Ácido Nucleico , RNA de Transferência/química , RNA de Transferência/metabolismo
2.
FEBS Lett ; 579(4): 855-8, 2005 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-15680962

RESUMO

The 30S ribosomal P site serves several functions in translation. It must specifically bind initiator tRNA during formation of the 30S initiation complex; bind the anticodon stem-loop of peptidyl-tRNA during the elongation phase; and help to maintain the translational reading frame when the A site is unoccupied. Early experiments provided evidence that 16S rRNA was an important component of the 30S P site. Footprinting and crosslinking studies later implicated specific nucleotides in interactions with tRNA. The crystal structures of the 30S subunit and 70S ribosome-tRNA complexes confirmed the interactions between 16S rRNA and tRNA, but also revealed contacts between tRNA and the C-terminal tails of proteins S9 and S13. Deletion of these tails now shows that the 16S rRNA contacts alone are sufficient to support protein synthesis in living cells.


Assuntos
RNA Ribossômico 16S/química , RNA Ribossômico 16S/fisiologia , Ribossomos/fisiologia , Domínio Catalítico , Cristalografia , Conformação de Ácido Nucleico , Estrutura Secundária de Proteína , RNA Ribossômico 16S/metabolismo , RNA de Transferência/química , RNA de Transferência/metabolismo , Proteínas Ribossômicas/química , Proteínas Ribossômicas/fisiologia , Ribossomos/química , Ribossomos/metabolismo
3.
Proc Natl Acad Sci U S A ; 101(34): 12439-43, 2004 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-15308780

RESUMO

Ribosome crystal structures have revealed that two small subunit proteins, S9 and S13, have C-terminal tails, which, together with several features of 16S rRNA, contact the anticodon stem-loop of P-site tRNA. To test the functional importance of these protein tails, we created genomic deletions of the C-terminal regions of S9 and S13. All of the tail deletions, including double mutants containing deletions in both S9 and S13, were viable, showing that Escherichia coli cells can synthesize all of their proteins by using ribosomes that contain 30S P sites composed only of RNA. However, these mutants have slower growth rates, indicating that the tails may play a supporting functional role in translation. In vitro analysis shows that 30S subunits purified from the S13 deletion mutants have a generally decreased affinity for tRNA, whereas deletion of the S9 tail selectively affects the binding of tRNAs whose anticodon stem sequences are most divergent from that of initiator tRNA.


Assuntos
Subunidades Proteicas/metabolismo , RNA de Transferência/metabolismo , Proteínas Ribossômicas/metabolismo , Ribossomos/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Conformação de Ácido Nucleico , Estrutura Terciária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/genética , RNA de Transferência/genética , Proteínas Ribossômicas/química , Proteínas Ribossômicas/genética , Ribossomos/química , Ribossomos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA