Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Semin Cell Dev Biol ; 138: 94-103, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-35450766

RESUMO

Mitochondria are vital organelles with a central role in all aspects of cellular metabolism. As a means to support the ever-changing demands of the cell, mitochondria produce energy, drive biosynthetic processes, maintain redox homeostasis, and function as a hub for cell signaling. While mitochondria have been widely studied for their role in disease and metabolic dysfunction, this organelle has a continually evolving role in the regulation of development, wound repair, and regeneration. Mitochondrial metabolism dynamically changes as tissues transition through distinct phases of development. These organelles support the energetic and biosynthetic demands of developing cells and function as key structures that coordinate the nutrient status of the organism with developmental progression. This review will examine the mechanisms that link mitochondria to developmental processes. We will also examine the process of mitochondrial respiratory quiescence (MRQ), a novel mechanism for regulating cellular metabolism through the biochemical and physiological remodeling of mitochondria. Lastly, we will examine MRQ as a system to discover the mechanisms that drive mitochondrial remodeling during development.


Assuntos
Mitocôndrias , Organelas , Mitocôndrias/metabolismo , Homeostase , Organelas/metabolismo , Transdução de Sinais , Metabolismo Energético
2.
Nat Metab ; 3(9): 1259-1274, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34545253

RESUMO

Changes in maternal diet and metabolic defects in mothers can profoundly affect health and disease in their progeny. However, the biochemical mechanisms that induce the initial reprogramming events at the cellular level have remained largely unknown owing to limitations in obtaining pure populations of quiescent oocytes. Here, we show that the precocious onset of mitochondrial respiratory quiescence causes a reprogramming of progeny metabolic state. The premature onset of mitochondrial respiratory quiescence drives the lowering of Drosophila oocyte NAD+ levels. NAD+ depletion in the oocyte leads to reduced methionine cycle production of the methyl donor S-adenosylmethionine in embryos and lower levels of histone H3 lysine 27 trimethylation, resulting in enhanced intestinal lipid metabolism in progeny. In addition, we show that triggering cellular quiescence in mammalian cells and chemotherapy-resistant human cancer cell models induces cellular reprogramming events identical to those seen in Drosophila, suggesting a conserved metabolic mechanism in systems reliant on quiescent cells.


Assuntos
Reprogramação Celular , Mitocôndrias/metabolismo , Animais , Feminino , Humanos , Oócitos/metabolismo , Oxirredução
3.
SAGE Open Med ; 5: 2050312116689519, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28293423

RESUMO

OBJECTIVE: Ankaferd hemostat is the first topical hemostatic agent about the red blood cell-fibrinogen relations tested in the clinical trials. Ankaferd hemostat consists of standardized plant extracts including Alpinia officinarum, Glycyrrhiza glabra, Thymus vulgaris, Urtica dioica, and Vitis vinifera. The aim of this study was to determine the effect of Ankaferd hemostat on viability of melanoma cell lines. METHODS: Dissimilar melanoma cell lines and primary cells were used in this study. These cells were treated with different concentrations of Ankaferd hemostat to assess the impact of different dosages of the drug. All cells treated with different concentrations were incubated for different time intervals. After the data had been obtained, one-tailed T-test was used to determine whether the Ankaferd hemostat would have any significant inhibitory impact on cell growth. RESULTS: We demonstrated in this study that cells treated with Ankaferd hemostat showed a significant decrease in cell viability compared to control groups. The cells showed different resistances against Ankaferd hemostat which depended on the dosage applied and the time treated cells had been incubated. We also demonstrated an inverse relationship between the concentration of the drug and the incubation time on one hand and the viability of the cells on the other hand, that is, increasing the concentration of the drug and the incubation time had a negative impact on cell viability. CONCLUSION: The findings in our study contribute to our knowledge about the anticancer impact of Ankaferd hemostat on different melanoma cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA