Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Small ; 19(25): e2208074, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36932896

RESUMO

Unlocking the potential of the hydrogen economy is dependent on achieving green hydrogen (H2 ) production at competitive costs. Engineering highly active and durable catalysts for both oxygen and hydrogen evolution reactions (OER and HER) from earth-abundant elements is key to decreasing costs of electrolysis, a carbon-free route for H2 production. Here, a scalable strategy to prepare doped cobalt oxide (Co3 O4 ) electrocatalysts with ultralow loading, disclosing the role of tungsten (W), molybdenum (Mo), and antimony (Sb) dopants in enhancing OER/HER activity in alkaline conditions, is reported. In situ Raman and X-ray absorption spectroscopies, and electrochemical measurements demonstrate that the dopants do not alter the reaction mechanisms but increase the bulk conductivity and density of redox active sites. As a result, the W-doped Co3 O4 electrode requires ≈390 and ≈560 mV overpotentials to reach ±10 and ±100 mA cm-2 for OER and HER, respectively, over long-term electrolysis. Furthermore, optimal Mo-doping leads to the highest OER and HER activities of 8524 and 634 A g-1 at overpotentials of 0.67 and 0.45 V, respectively. These novel insights provide directions for the effective engineering of Co3 O4 as a low-cost material for green hydrogen electrocatalysis at large scales.

2.
Inorg Chem ; 62(24): 9379-9390, 2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37279492

RESUMO

Iron sulfides are key materials in metalloprotein catalysis. One interesting aspect of iron sulfides in biology is the incorporation of secondary metals, for example, Mo, in nitrogenase. These secondary metals may provide vital clues as to how these enzymes first emerged in nature. In this work, we examined the materials resulting from the coprecipitation of molybdenum with iron sulfides using X-ray absorption spectroscopy (XAS). The materials were tested as catalysts, and direct reductants using nitrite (NO2-) and protons (H+) as test substrates. It was found that Mo will coprecipitate with iron as sulfides, however, in distinct ways depending on the stoichiometric ratios of Mo, Fe, and HS-. It was observed that the selectivity of reduction products depends on the amount of molybdenum, with the presence of approximately at 10% Mo optimizing ammonium/ammonia (NH4+/NH3) production from NO2- and minimizing competitive hydrogen (H2) formation from protons (H+) with a secondary reductant.

3.
Angew Chem Int Ed Engl ; 58(38): 13565-13572, 2019 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-31328904

RESUMO

Metal-organic framework (MOFs) two-dimensional (2D) nanosheets have many coordinatively unsaturated metal sites that act as active centres for catalysis. To date, limited numbers of 2D MOFs nanosheets can be obtained through top-down or bottom-up synthesis strategies. Herein, we report a 2D oxide sacrifice approach (2dOSA) to facilely synthesize ultrathin MOF-74 and BTC MOF nanosheets with a flexible combination of metal sites, which cannot be obtained through the delamination of their bulk counterparts (top-down) or the conventional solvothermal method (bottom-up). The ultrathin iron-cobalt MOF-74 nanosheets prepared are only 2.6 nm thick. The sample enriched with surface coordinatively unsaturated metal sites, exhibits a significantly higher oxygen evolution reaction reactivity than bulk FeCo MOF-74 particles and the state-of-the-art MOF catalyst. It is believed that this 2dOSA could provide a new and simple way to synthesize various ultrathin MOF nanosheets for wide applications.

4.
Angew Chem Int Ed Engl ; 58(11): 3426-3432, 2019 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-30589176

RESUMO

Manganese oxide (MnOx ) electrocatalysts are examined herein by in situ soft X-ray absorption spectroscopy (XAS) and resonant inelastic X-ray scattering (RIXS) during the oxidation of water buffered by borate (pH 9.2) at potentials from 0.75 to 2.25 V vs. the reversible hydrogen electrode. Correlation of L-edge XAS data with previous mechanistic studies indicates MnIV is the highest oxidation state involved in the catalytic mechanism. MnOx is transformed into birnessite at 1.45 V and does not undergo further structural phase changes. At potentials beyond this transformation, RIXS spectra show progressive enhancement of charge transfer transitions from oxygen to manganese. Theoretical analysis of these data indicates increased hybridization of the Mn-O orbitals and withdrawal of electron density from the O ligand shell. In situ XAS experiments at the O K-edge provide complementary evidence for such a transition. This step is crucial for the formation of O2 from water.

5.
Chemistry ; 23(54): 13482-13492, 2017 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-28722330

RESUMO

Influence of the conditions for aerobic oxidation of Mn2+(aq) catalysed by the MnxEFG protein complex on the morphology, structure and reactivity of the resulting biogenic manganese oxides (MnOx ) is explored. Physical characterisation of MnOx includes scanning and transmission electron microscopy, and X-ray photoelectron and K-edge Mn, Fe X-ray absorption spectroscopy. This characterisation reveals that the MnOx materials share the structural features of birnessite, yet differ in the degree of structural disorder. Importantly, these biogenic products exhibit strikingly different morphologies that can be easily controlled. Changing the substrate-to-protein ratio produces MnOx either as nm-thin sheets, or rods with diameters below 20 nm, or a combination of the two. Mineralisation in solutions that contain Fe2+(aq) makes solids with significant disorder in the structure, while the presence of Ca2+(aq) facilitates formation of more ordered materials. The (photo)oxidation and (photo)electrocatalytic capacity of the MnOx minerals is examined and correlated with their structural properties.

6.
Inorg Chem ; 54(7): 3573-83, 2015 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-25790062

RESUMO

A metal-templated synthesis (MTS) approach was used to preorganize the forward endo-hydroxamic acid monomer 4-[(5-aminopentyl)(hydroxy)amino]-4-oxobutanoic acid (for-PBH) about iron(III) in a 1:3 metal/ligand ratio to furnish the iron(III) siderophore for-[Fe(DFOE)] (ferrioxamine E) following peptide coupling. Substitution of for-PBH with the reverse (retro) hydroxamic acid analogue 3-(6-amino-N-hydroxyhexanamido)propanoic acid (ret-PBH) furnished ret-[Fe(DFOE)] (ret-ferrioxamine E). As isomers, for-[Fe(DFOE)] and ret-[Fe(DFOE)] gave identical mass spectrometry signals ([M + H(+)](+), m/zcalc 654.3, m/zobs 654.3), yet for-[Fe(DFOE)] eluted in a more polar window (tR = 23.44 min) than ret-[Fe(DFOE)] (tR = 28.13 min) on a C18 reverse-phase high-performance liquid chromatography (RP-HPLC) column. for-[Ga(DFOE)] (tR = 22.99 min) and ret-[Ga(DFOE)] (tR = 28.11 min) were prepared using gallium(III) as the metal-ion template and showed the same trend for the retention time. Ring-expanded analogues of for-[Fe(DFOE)] and ret-[Fe(DFOE)] were prepared from endo-hydroxamic acid monomers with one additional methylene unit in the amine-containing region, 4-[(6-aminohexyl)(hydroxy)amino]-4-oxobutanoic acid (for-HBH) or 3-(7-amino-N-hydroxyheptanamido)propanoic acid (ret-HBH), to give the corresponding tris(homoferrioxamine E) macrocycles, for-[Fe(HHDFOE)] or ret-[Fe(HHDFOE)] ([M + H(+)](+), m/zcalc 696.3, m/zobs 696.4). The MTS reaction using a constitutional isomer of for-HBH that transposed the methylene unit to the carboxylic acid containing region, 5-[(5-aminopentyl)(hydroxy)amino]-5-oxopentanoic acid (for-PPH), gave the macrocycle for-[Fe(HPDFOE)] in a yield significantly less than that for for-[Fe(HHDFOE)], with the gallium(III) analogue for-[Ga(HPDFOE)] unable to be detected. The work demonstrates the utility and limits of MTS for the assembly of macrocyclic siderophores from endo-hydroxamic acid monomers. Indirect measures (RP-HPLC order of elution, c log P values, molecular mechanics, and density functional theory calculations) of the relative water solubility of the ligands, the iron(III) macrocycles, and the apomacrocycles were consistent in identifying for-DFOE as the most water-soluble macrocycle from for-DFOE, ret-DFOE, for-HHDFOE, ret-HHDFOE, and for-HPDFOE. From this group, only for-DFOE is known in nature, which could suggest that water solubility is an important trait in its natural selection.


Assuntos
Gálio/química , Ácidos Hidroxâmicos/química , Ferro/química , Lactamas/química , Cromatografia Líquida , Cristalografia por Raios X , Ligantes , Espectroscopia de Ressonância Magnética , Estrutura Molecular
7.
J Am Chem Soc ; 135(3): 1124-36, 2013 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-23259487

RESUMO

The electronic structure of the Fe-O(2) center in oxy-hemoglobin and oxy-myoglobin is a long-standing issue in the field of bioinorganic chemistry. Spectroscopic studies have been complicated by the highly delocalized nature of the porphyrin, and calculations require interpretation of multideterminant wave functions for a highly covalent metal site. Here, iron L-edge X-ray absorption spectroscopy, interpreted using a valence bond configuration interaction multiplet model, is applied to directly probe the electronic structure of the iron in the biomimetic Fe-O(2) heme complex [Fe(pfp)(1-MeIm)O(2)] (pfp ("picket fence porphyrin") = meso-tetra(α,α,α,α-o-pivalamidophenyl)porphyrin or TpivPP). This method allows separate estimates of σ-donor, π-donor, and π-acceptor interactions through ligand-to-metal charge transfer and metal-to-ligand charge transfer mixing pathways. The L-edge spectrum of [Fe(pfp)(1-MeIm)O(2)] is further compared to those of [Fe(II)(pfp)(1-MeIm)(2)], [Fe(II)(pfp)], and [Fe(III)(tpp)(ImH)(2)]Cl (tpp = meso-tetraphenylporphyrin) which have Fe(II)S = 0, Fe(II)S = 1, and Fe(III)S = 1/2 ground states, respectively. These serve as references for the three possible contributions to the ground state of oxy-pfp. The Fe-O(2) pfp site is experimentally determined to have both significant σ-donation and a strong π-interaction of the O(2) with the iron, with the latter having implications with respect to the spin polarization of the ground state.


Assuntos
Ferro/química , Metaloporfirinas/química , Oxigênio/química , Sítios de Ligação , Conformação Molecular , Teoria Quântica , Espectroscopia por Absorção de Raios X
8.
J Am Chem Soc ; 135(22): 8304-23, 2013 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-23663158

RESUMO

A family of dinuclear cobalt complexes with bridging bis(dioxolene) ligands derived from 3,3,3',3'-tetramethyl-1,1'-spirobis(indane-5,5',6,6'-tetrol) (spiroH4) and ancillary ligands based on tris(2-pyridylmethyl)amine (tpa) has been synthesized and characterized. The bis(dioxolene) bridging ligand is redox-active and accessible in the (spiro(cat-cat))(4-), (spiro(SQ-cat))(3-), and (spiro(SQ-SQ))(2-) forms, (cat = catecholate, SQ = semiquinonate). Variation of the ancillary ligand (Mentpa; n = 0-3) by successive methylation of the 6-position of the pyridine rings influences the redox state of the complex, governing the distribution of electrons between the cobalt centers and the bridging ligands. Pure samples of salts of the complexes [Co2(spiro)(tpa)2](2+) (1), [Co2(spiro)(Metpa)2](2+) (2), [Co2(spiro)(Me2tpa)2](2+) (3), [Co2(spiro)(Me3tpa)2](2+) (4), [Co2(spiro)(tpa)2](3+) (5), and [Co2(spiro)(tpa)2](4+) (6) have been isolated, and 1, 4, and 6 have been characterized by single crystal X-ray diffraction. Studies in the solid and solution states using multiple techniques reveal temperature invariant redox states for 1, 2, and 4-6 and provide clear evidence for four different charge distributions: 1 and 2 are Co(III)-(spiro(cat-cat))-Co(III), 4 is Co(II)-(spiro(SQ-SQ))-Co(II), 5 is Co(III)-(spiro(SQ-cat))-Co(III), and 6 is Co(III)-(spiro(SQ-SQ))-Co(III). Of the six complexes, only 3 shows evidence of temperature dependence of the charge distribution, displaying a rare thermally induced two-step valence tautomeric transition from the Co(III)-(spiro(cat-cat))-Co(III) form to Co(II)-(spiro(SQ-cat))-Co(III) and then to Co(II)-(spiro(SQ-SQ))-Co(II) in both solid and solution states. This is the first time a two-step valence tautomeric (VT) transition has been observed in solution. Partial photoinduction of the VT transition is also possible in the solid. Magnetic and spectroscopic studies of 5 and 6 reveal that spiroconjugation of the bis(dioxolene) ligand allows electronic interaction across the spiro bridge, suggesting that thermally activated vibronic coupling between the two cobalt-dioxolene moieties plays a key role in the two-step transition evident for 3.


Assuntos
Cobalto/química , Dioxolanos/química , Compostos Organometálicos/química , Compostos de Espiro/química , Ligantes , Modelos Moleculares , Estrutura Molecular , Oxirredução
9.
Nat Commun ; 14(1): 547, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36725848

RESUMO

Electrocatalytic synergy is a functional yet underrated concept in electrocatalysis. Often, it materializes as intermetallic interaction between different metals. We demonstrate interphasic synergy in monometallic structures is as much effective. An interphasic synergy between Ni(OH)2 and Ni-N/Ni-C phases is reported for alkaline hydrogen evolution reaction that lowers the energy barriers for hydrogen adsorption-desorption and facilitates that of hydroxyl intermediates. This makes ready-to-serve Ni active sites and allocates a large amount of Ni d-states at Fermi level to promote charge redistribution from Ni(OH)2 to Ni-N/Ni-C and the co-adsorption of Hads and OHads intermediates on Ni-N/Ni-C moieties. As a result, a Ni(OH)2@Ni-N/Ni-C hetero-hierarchical nanostructure is developed, lowering the overpotentials to deliver -10 and -100 mA cm-2 in alkaline media by 102 and 113 mV, respectively, compared to monophasic Ni(OH)2 catalyst. This study unveils the interphasic synergy as an effective strategy to design monometallic electrocatalysts for water splitting and other energy applications.

10.
Micromachines (Basel) ; 14(10)2023 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-37893407

RESUMO

The performance and lifespan of cutting tools are significantly influenced by their surface quality. The present report highlights recent advances in enhancing the surface characteristics of tungsten carbide and high-speed steel cutting tools using a novel micro-machining technique for polishing and edge-honing. Notably, the main aim was to reduce the surface roughness while maintaining the hardness of the materials at an optimal level. By conducting a thorough analysis of surfaces obtained using different techniques, it was found that the micro-machining method effectively decreased the surface roughness of the cutting tools the most effectively out of the techniques investigated. Significantly, the surface roughness was reduced from an initial measurement of 400 nm to an impressive value of 60 nm. No significant change in hardness was observed, which guarantees the maintenance of the mechanical properties of the cutting tools. This analysis enhances the comprehension of surface enhancement methodologies for cutting tools through the presentation of these findings. The observed decrease in surface roughness, along with the consistent hardness, exhibits potential for improving tool performance. These enhancements possess the capacity to optimise manufacturing processes, increase tool reliability, and minimise waste generation.

11.
Adv Sci (Weinh) ; 10(35): e2303571, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37888857

RESUMO

Surface modification of heterogeneous photocatalysts with single-atom catalysts (SACs) is an attractive approach for achieving enhanced photocatalytic performance. However, there is limited knowledge of the mechanism of photocatalytic enhancement in SAC-modified photocatalysts, which makes the rational design of high-performance SAC-based photocatalysts challenging. Herein, a series of photocatalysts for the aerobic degradation of pollutants based on anatase TiO2 modified with various low-cost, non-noble SACs (vanadate, Cu, and Fe ions) is reported. The most active SAC-modified photocatalysts outperform TiO2 modified with the corresponding metal oxide nanoparticles and state-of-the-art benchmark photocatalysts such as platinized TiO2 and commercial P25 powders. A combination of in situ electron paramagnetic resonance spectroscopy and theoretical calculations reveal that the best-performing photocatalysts modified with Cu(II) and vanadate SACs exhibit significant differences in the mechanism of activity enhancement, particularly with respect to the rate of oxygen reduction. The superior performance of vanadate SAC-modified TiO2 is found to be related to the shallow character of the SAC-induced intragap states, which allows for both the effective extraction of photogenerated electrons and fast catalytic turnover in the reduction of dioxygen, which translates directly into diminished recombination. These results provide essential guidelines for developing efficient SAC-based photocatalysts.

12.
Inorg Chem ; 51(7): 3944-6, 2012 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-22432512

RESUMO

A dinuclear cobalt complex with cobalt centers bridged by a bis(dioxolene) ligand exhibits a rare two-step valence tautomeric transition.

13.
Chemistry ; 17(16): 4408-17, 2011 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-21416515

RESUMO

Polyoxometalate ions are used as ligands in water-oxidation processes related to solar energy production. An important step in these reactions is the association and dissociation of water from the catalytic sites, the rates of which are unknown. Here we report the exchange rates of water ligated to Co(II) atoms in two polyoxotungstate sandwich molecules using the (17)O-NMR-based Swift-Connick method. The compounds were the [Co(4)(H(2)O)(2)(B-α-PW(9)O(34))(2)](10-) and the larger αßßα-[Co(4)(H(2)O)(2)(P(2)W(15)O(56))(2)](16-) ions, each with two water molecules bound trans to one another in a Co(II) sandwich between the tungstate ligands. The clusters, in both solid and solution state, were characterized by a range of methods, including NMR, EPR, FT-IR, UV-Vis, and EXAFS spectroscopy, ESI-MS, single-crystal X-ray crystallography, and potentiometry. For [Co(4)(H(2)O)(2)(B-α-PW(9)O(34))(2)](10-) at pH 5.4, we estimate: k(298)=1.5(5)±0.3×10(6) s(-1), ΔH(≠)=39.8±0.4 kJ mol(-1), ΔS(≠)=+7.1±1.2 J mol(-1) K(-1) and ΔV(≠)=5.6 ±1.6 cm(3) mol(-1). For the Wells-Dawson sandwich cluster (αßßα-[Co(4)(H(2)O)(2)(P(2)W(15)O(56))(2)](16-)) at pH 5.54, we find: k(298)=1.6(2)±0.3×10(6) s(-1), ΔH(≠)=27.6±0.4 kJ mol(-1) ΔS(≠)=-33±1.3 J mol(-1) K(-1) and ΔV(≠)=2.2±1.4 cm(3) mol(-1) at pH 5.2. The molecules are clearly stable and monospecific in slightly acidic solutions, but dissociate in strongly acidic solutions. This dissociation is detectable by EPR spectroscopy as S=3/2 Co(II) species (such as the [Co(H(2)O)(6)](2+) monomer ion) and by the significant reduction of the Co-Co vector in the XAS spectra.


Assuntos
Cobalto/química , Modelos Químicos , Polímeros/química , Compostos de Tungstênio/química , Água/química , Espectroscopia de Ressonância de Spin Eletrônica , Concentração de Íons de Hidrogênio , Oxirredução , Soluções , Espectroscopia por Absorção de Raios X
14.
J Am Chem Soc ; 132(11): 4006-15, 2010 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-20187651

RESUMO

Most bacteria and fungi produce low-molecular-weight iron chelators called siderophores. Although different siderophore structures have been characterized, the iron-binding moieties often contain catecholate or hydroxamate groups. Siderophores function because of their extraordinarily high stability constants (K(STAB) = 10(30)-10(49)) and selectivity for Fe(III), yet the origin of these high stability constants has been difficult to quantify experimentally. Herein, we utilize Fe L-edge X-ray absorption spectroscopy to determine the differential orbital covalency (i.e., the differences in the mixing of the metal d-orbitals with ligand valence orbitals) of a series of siderophore model compounds. The results enable evaluation of the electronic structure contributions to their high stability constants in terms of sigma- and pi-donor covalent bonding, ionic bonding, and solvent effects. The results indicate substantial differences in the covalent contributions to stability constants of hydroxamate and catecholate complexes and show that increased sigma as well as pi bonding contributes to the high stability constants of catecholate complexes.


Assuntos
Ferro , Sideróforos/química , Espectroscopia por Absorção de Raios X/métodos , Elétrons , Ligantes , Metais/química , Teoria Quântica
15.
Chemosphere ; 248: 126060, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32032879

RESUMO

Naturally occurring and synthetic chelating ligands can act as suppressants for fungal pathogens, nematodes and weeds, based on their ability to alter micronutrient bioavailability in soil, particularly iron. Chelators are also used as detergents, for remediation of heavy metal contamination and for supplying metals as fertiliser. The aim of this work was to test the ability of chelators to solubilise metals, in particular iron, in tropical soils over an environmentally relevant pH range. Six topsoils from farms in North Queensland, Australia were adjusted to pH 5, 6 and 7 and then extracted with CaCl2, EDTA, DTPA, EDDHA and mimosine. The extracts were analysed for concentrations of aluminium, copper, iron, magnesium, manganese, potassium, strontium and zinc. EDDHA solubilised iron effectively under all of the conditions tested, indicating its likely suitability for pest suppression. The concentration of aluminium in EDDHA extracts was positively correlated with pH, and at pH 7 the concentration of aluminium was far greater than that of iron. An increase in the mobility of aluminium from EDDHA application to soil may lead to aluminium toxicity in plants, which should be considered further in any practical application of EDDHA. Mimosine, which is also a strong chelator, was a poor extractor of all metals, possibly due to adsorption to the soil.


Assuntos
Quelantes/química , Recuperação e Remediação Ambiental/métodos , Metais Pesados/análise , Poluentes do Solo/análise , Adsorção , Disponibilidade Biológica , Cobre/análise , Etilenodiaminas , Fertilizantes/análise , Ferro/análise , Ligantes , Manganês/análise , Solo , Oligoelementos/análise , Zinco/análise
16.
Nat Commun ; 11(1): 2720, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32483179

RESUMO

Nickel-based catalysts are most commonly used in industrial alkaline water electrolysis. However, it remains a great challenge to address the sluggish reaction kinetics and severe deactivation problems of hydrogen evolution reaction (HER). Here, we show a Cu-doped Ni catalyst implanted with Ni-O-VOx sites (Ni(Cu)VOx) for alkaline HER. The optimal Ni(Cu)VOx electrode exhibits a near-zero onset overpotential and low overpotential of 21 mV to deliver -10 mA cm-2, which is comparable to benchmark Pt/C catalyst. Evidence for the formation of Ni-O-VOx sites in Ni(Cu)VOx is established by systematic X-ray absorption spectroscopy studies. The VOx can cause a substantial dampening of Ni lattice and create an enlarged electrochemically active surface area. First-principles calculations support that the Ni-O-VOx sites are superactive and can promote the charge redistribution from Ni to VOx, which greatly weakens the H-adsorption and H2 release free energy over Ni. This endows the Ni(Cu)VOx electrode high HER activity and long-term durability.

17.
Inorg Chem ; 48(4): 1678-88, 2009 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-19149467

RESUMO

Corrole is a tetrapyrrolic macrocycle that has one carbon atom less than a porphyrin. The ring contraction reduces the symmetry from D(4h) to C(2v), changes the electronic structure of the heterocycle, and leads to a smaller central cavity with three protons rather than the two of a porphyrin. The differences between ferric corroles and porphyrins lead to a number of differences in reactivity including increased axial ligand lability and a tendency to form 5-coordinate complexes. The electronic structure origin of these differences has been difficult to study experimentally as the dominant porphyrin/corrole pi --> pi* transitions obscure the electronic transitions of the metal. Recently, we have developed a methodology that allows for the interpretation of the multiplet structure of Fe L-edges in terms of differential orbital covalency (i.e., the differences in mixing of the metal d orbitals with the ligand valence orbitals) using a valence bond configuration interaction model. Herein, we apply this methodology, combined with a ligand field analysis of the Fe K pre-edge to a low-spin ferric corrole, and compare it to a low-spin ferric porphyrin. The experimental results combined with DFT calculations show that the contracted corrole is both a stronger sigma donor and a very anisotropic pi donor. These differences decrease the bonding interactions with axial ligands and contribute to the increased axial ligand lability and reactivity of ferric corroles relative to ferric porphyrins.


Assuntos
Compostos Férricos/química , Metaloporfirinas/química , Elétrons , Modelos Químicos , Porfirinas/química , Espectroscopia por Absorção de Raios X
18.
Nat Commun ; 10(1): 5599, 2019 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-31811129

RESUMO

Efficient generation of hydrogen from water-splitting is an underpinning chemistry to realize the hydrogen economy. Low cost, transition metals such as nickel and iron-based oxides/hydroxides have been regarded as promising catalysts for the oxygen evolution reaction in alkaline media with overpotentials as low as ~200 mV to achieve 10 mA cm-2, however, they are generally unsuitable for the hydrogen evolution reaction. Herein, we show a Janus nanoparticle catalyst with a nickel-iron oxide interface and multi-site functionality for a highly efficient hydrogen evolution reaction with a comparable performance to the benchmark platinum on carbon catalyst. Density functional theory calculations reveal that the hydrogen evolution reaction catalytic activity of the nanoparticle is induced by the strong electronic coupling effect between the iron oxide and the nickel at the interface. Remarkably, the catalyst also exhibits extraordinary oxygen evolution reaction activity, enabling an active and stable bi-functional catalyst for whole cell water-splitting with, to the best of our knowledge, the highest energy efficiency (83.7%) reported to date.

19.
Adv Mater ; 31(4): e1805581, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30488551

RESUMO

Rational design and synthesis of hetero-coordinated moieties at the atomic scale can significantly raise the performance of the catalyst and obtain mechanistic insight into the oxygen-involving electrocatalysis. Here, a facile plasma-photochemical strategy is applied to construct atomically coordinated Pt-Co-Se moieties in defective CoSe2 (CoSe2- x ) through filling the plasma-created Se vacancies in CoSe2- x with single Pt atomic species (CoSe2- x -Pt) under ultraviolet irradiation. The filling of single Pt can remarkably enhance the oxygen evolution reaction (OER) activity of CoSe2 . Optimal OER specific activity is achieved with a Pt content of 2.25 wt% in CoSe2- x -Pt, exceeding that of CoSe2- x by a factor of 9. CoSe2- x -Pt shows much better OER performance than CoSe2- x filled with single Ni and even Ru atomic species (CoSe2- x -Ni and CoSe2- x -Ru). Noticeably, it is general that Pt is not a good OER catalyst but Ru is; thus the design of active sites for electrocatalysis at an atomic level should follow a different intrinsic mechanism. Mechanism studies unravel that the single Pt can induce much higher electronic distribution asymmetry degree than both single Ni and Ru, and benefit the interaction between the Co sites and adsorbates (OH*, O*, and OOH*) during the OER process, leading to a better OER activity.

20.
Inorg Chem ; 47(24): 11543-50, 2008 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-18656914

RESUMO

The mononuclear nonheme iron active site of N694C soybean lipoxygenase (sLO1) has been investigated in the resting ferrous form using a combination of Fe-K-pre-edge, near-edge (using the minuit X-ray absorption near-edge full multiple-scattering approach), and extended X-ray absorption fine structure (EXAFS) methods. The results indicate that the active site is six-coordinate (6C) with a large perturbation in the first-shell bond distances in comparison to the more ordered octahedral site in wild-type sLO1. Upon mutation of the asparagine to cysteine, the short Fe-O interaction with asparagine is replaced by a weak Fe-(H(2)O), which leads to a distorted 6C site with an effective 5C ligand field. In addition, it is shown that near-edge multiple scattering analysis can give important three-dimensional structural information, which usually cannot be accessed using EXAFS analysis. It is further shown that, relative to EXAFS, near-edge analysis is more sensitive to partial coordination numbers and can be potentially used as a tool for structure determination in a mixture of chemical species.


Assuntos
Absorciometria de Fóton/métodos , Lipoxigenase/química , Substituição de Aminoácidos , Asparagina , Domínio Catalítico , Cisteína , Ligação de Hidrogênio , Compostos Inorgânicos/química , Lipoxigenase/genética , Mutagênese Sítio-Dirigida , Glycine max/enzimologia , Espectroscopia de Infravermelho com Transformada de Fourier , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA